

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 16, Issue, 03, pp. 13559-13561, March, 2025

RESEARCH ARTICLE

COMMON COINCIDENCE POINTS FOR TWO PAIRS OF R-WEAKLY COMMUTATIVE MAPPINGS ON B2-MULTIPLICATIVE METRIC SPACE

*Manish Kumar

(Department of Mathematics), (Government Degree College Nanauta, Saharanpur)

ARTICLE INFO

ABSTRACT

Article History:

Received 08th January, 2025 Received in revised form 29th January, 2025 Accepted 03rd February, 2025 Published online 24th March, 2025

Keywords:

B metric Space, 2-metric space, multiplicative metric space, B2multiplicative metric space, R-weakly commutative mappings, Coincidence point. In [22], Kumar introduced the notion of b2-multiplicative metric space. Czerwik [2] generalized the concept of metric space and put the idea and terminology of b-metric space. In [15] B. Surender Reddy et al presented the concept of 2-multiplicative metric space. In this paper we introduce the concept of R-weakly commutative mappings on b2-multiplicative metric space. Also we prove a common coincidence point theorem for two pairs of R-weakly commutative mappings on b2-multiplicative metric space.

Citation: Manish Kumar. 2025. "Common coincidence points for two pairs of r-weakly commutative mappings on b2-multiplicative metric space", Asian Journal of Science and Technology, 16, (03), 13559-13561.

Copyright©2025, Manish Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Grossman and Katz [11] introduced a new kind of Calculus called multiplicative (or non-Newtonian) calculus by interchanging the roles of subtraction and addition with the role of division and multiplication, respectively. By using the ideas of Grossman and Katz [11], Bashirov et al. [7] defined the notion of multiplicative metric. Czerwik [2] introduced the notion of b-metric space which is a generalization of a metric space. There are some fixed point theorems in b-metric spaces. Huang et al. [14] introduced fixed point results for rational Geraghty contractive mappings; Ozturk and Turkoglu [20] studied fixed points for generalized alpha-psi-contractions; Shatanawi et al. [22] established a study of contraction conditions using comparison functions. The notion of a 2-metric space was introduced by Gahler, in [4]. Several fixed-point results were obtained in [1,2,3,4,5 6], as a generalization of the concept of a metric space. A 2metric is not acontinuous function of its variables, whereas an ordinary metric is. The basic philosophy is that since a 2-metric measures area, a contraction should send the space towards a configuration ofzero area, which is to say a line. Z. Mustafa introduced a new type of generalized metric space called b2-metric space, as a generalization of the 2-metric space, [8]. In[15] B. Surender Reddy et al presented the conception of 2-multiplicative metric space and 2-multiplicative Normed linear space and investigate topological properties in 2-multiplicative NDLS. In [22], Kumar introduced the notion of b2-multiplicative metric space. The aim of this paper is to introduce the concept of R-weakly commutative mappings on b2-multiplicative metric and then we prove a common coincidence point result for two pairs of R-weakly commutative mappings on b2-multiplicative metric space.

Preliminaries

Definition 1.1. [4, 9] Let X be a non-empty set and d : $X \times X \times X \rightarrow R_+$ be a map satisfying the following properties

- (i) d(x,y,z) = 0 if at least two of the three points are the same.
- (ii) For $x,y\in X$ such that $x \neq y$ there exists a point $z \in X$ such that $d(x,y,z)\neq 0$.
- (iii) symmetry property: for x,y,z \in X, d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).
- (iv) rectangle inequality: $d(x,y,z) \le d(x,y,t) + d(y,z,t) + d(z,x,t)$ for x,y,z,t $\in X$.

Then d is a 2-metric and (X,d) is a 2-metric space.

Definition 1.2. [8] Let X be a non-empty set and $d:X \times X \times X \rightarrow R_+$ be a map satisfying the following properties

- (i) d(x,y,z) = 0 if at least two of the three points are the same.
- (ii) For x,y∈X such that x ≠y there exists a point z ∈X such that d(x,y,z)≠0.
- (iii) symmetry property: for x,y,z \in X, d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).
- (iv) s-rectangle inequality:there exists $s \ge 1$ such that $d(x,y,z)\le s[d(x,y,t) + d(y,z,t) + d(z,x,t)]$ for $x,y,z,t\in X$.

Then d is a b2-metric and (X,d) is a b2-metric space If s=1, the b2-metric reduces to the 2-metric.

Definition 1.3. [10] Let X be a non-empty set and d : $X \times X \times X \rightarrow R_+$ be a map satisfying the following properties:

- (i) d(x,y,z) = 0 if at least two of the three points are the same.
- (ii) For x,y∈X such that x ≠y there exists a point z ∈X such that d(x,y,z)≠0.
- (iii) symmetry property: for x,y,z \in X, d(x,y,z) = d(x,z,y) = d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x).
- (iv) modified rectangle inequality:there exists $\alpha,\beta,\gamma\geq 1$ such that $d(x,y,z)\leq \alpha d(x,y,t) + \beta d(y,z,t) + \gamma d(z,x,t)]$ for $x,y,z,t\in X$.

Then d is a generalized b2-metric and (X,d)is a generalized b2- metric space.

Definition 1.4.[16] Let X be a nonempty set and let $s \ge 1$ be a given real number. A mapping m: $X \times X \rightarrow [1, \infty)$ is called a b-multiplicative metric if the following conditions hold:

(m1) m(x, y) > 1 for all x, $y \in X$ with $x \not\models y$ and m(x, y) = 1 if and only if x = y; (m2) m(x, y) = m(y, x) for all x, $y \in X$;

(m2) $m(x, y) \le m(y, x)$ for all $x, y, z \in X$. (m3) $m(x, z) \le m(x, y)^s \cdot m(y, z)^s$ for all $x, y, z \in X$.

The triplet (X, m, s) is called a b-multiplicative metric space.

Definition 3.1[15]: A product 2-metric on X is a mapping $h: X \times X \times X \rightarrow R^+$ that satisfies the following conditions.

- (i) $h(91, 92, 93) \ge 1$, $\forall 91, 92, 93 \in X$ and h(91, 92, 93) = 1when two of the three elements $91, 92, 93 \in X$ are equal
- (ii) $h(\vartheta 1, \vartheta 2, \vartheta 3) = h(\vartheta 1, \vartheta 3, \vartheta 2) = h(\vartheta 2, \vartheta 1, \vartheta 3) = ... \forall \vartheta 1, \vartheta 2, \vartheta 3 \in X$
- $(iii) h(\vartheta 1, \vartheta 2, \vartheta 3) \leq h(\vartheta 1, \vartheta 2, a).h(\vartheta 1, a, v 3).h(a, \vartheta 2, \vartheta 3) \forall \vartheta 1, \vartheta 2, \\ \vartheta 3, a \in \mathbf{X}.$

The pair (X, h) is known as a product 2-MCS.

Definition 3.1[22]: Let X be a nonempty set and let $s \ge 1$ be a given real number. A mapping m: $X \times X \times X \rightarrow [1, \infty)$ is called a b2-multiplicative metric if the following conditions hold:

(m1) m(x, y, z) > 1 for all x, y, $z \in X$ and m(x, y, z) = 1 when two of the three elements x. y.

 $z \in X$ are equal;

(m2) m(x, y, z) = m(p(x, y, z)) for all x, y, z \in X and p(x, y, z) is any permutation of x, y, z;

 $\begin{array}{l} (m3) \ m(x, \ y, \ z) \leq m(x, \ y, \ a)^s \cdot \ m(x, \ a, \ z)^s \cdot \ m(a, \ y, \ z)^s for \ all \ x, \ y, \ z, \ a \in \\ X. \end{array}$

The triplet (X, m, s) is called a b2-multiplicative metric space.

Example 2.1[22]. Let $X = [0, \infty)$. Define a mapping $m_a: X \times X \times X \rightarrow [1,\infty)$, $m_a(x, y, z) = a^{\min\{(x-y)^2, (y-z)^2, (z-x)^2\}}$, where a > 1 is any fixed real number. Then for each a, m_a is b2-multiplicative metric on X with s = 2. Note that ma is not a 2-multiplicative metric on X.

Let (X, m, s) is a b2-multiplicative metric space. Then the multiplicative open and closed 2-ball of radius $\varepsilon > 1$ having center at x and y is of the form: $B_{\varepsilon}(x, y) = \{a \in X : m(x, y, a) < \varepsilon\}$ and $B_{\varepsilon}(x, y) = \{a \in X : m(x, y, a) \le \varepsilon\}$ respectively.

Let $\{x_n\}$ be a sequence in a b2-multiplicative metric space (X, m, s).

- 1. $\{x_n\}$ is said to be b2-multiplicative convergent to $x \in X$, written as $\lim_n x_n = x$, if for alla $\in X \lim_n m(x_n, x, a) = 0$.
- 2. $\{x_n\}$ is said to be a b2-Cauchy sequence in X if for all $a \in X$, $\lim_{n. m} d(x_n, x_m, a) = 0$.
- 3. (X, m, s) is said to be b2-complete if every b2-Cauchy sequence is a b2-convergent sequence.

RESULTS

Definition3.1: Let (X, m, s) be a b2-multiplicative metric space. Two mappingsA, $B : X \to X$ are said to be R-weakly commutative if $m(ABx, BAx, a) \leq m(Ax, Bx, a)$ for all x, a $\in X$.

Theorem 3.1. Let (X, m, s) be a complete b2-multiplicative metric space. Let A, B, S, T : $X \to X$ be mappings such that for each x, y, $a \in X$,

- (i) $AX \subseteq TX$ and $BX \subseteq SX$;
- (ii) The pairs $\{A,\,S\}$ and $\{B,\,T\}$ are R-weakly commutative;
- (iii)m(Ax, By, a) $\leq \max\{m(Sx, Ty, a), m(Sx, Ax, a), m(Ty, By, a), a\}$

$$m(Sx, By, a)^{1/2s} \cdot m(Ty, Ax, a)$$

where $\kappa \in [0, 1/s)$.

Then the pairs {A, S} and {B, T} has a common coincidence point in X.

Proof. As we have $x_0 \in X$ such that $(x_0, x_1, a) \in E_a$, where $y_0 = Ax_0 = Tx_1andx_2 \in Xs$. t. $y_1 = Bx_1 = Sx_2$ and thus we get sequences $\{x_n\}$ and $\{y_n\}$ such that

 $y_{2n} = Ax_{2n} = Tx_{2n+1}and y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}n = 0, 1, 2, 3, \dots$ From (1), we have $m(y_{2n}, y_{2n+1}, a) = m(Ax_{2n}, Bx_{2n+1}, a)$ $\leq \max\{m(Sx_{2n}, Tx_{2n+1}, a), m(Sx_{2n}, Ax_{2n}, a), m(Tx_{2n+1}, Bx_{2n+1}, a), \\ m(Sx_{2n}, Bx_{2n+1}, a)^{1/2s} \cdot m(Tx_{2n+1}, Ax_{2n}, a)\}^{\kappa}$
$$\begin{split} &= \max \left\{ m(y_{2n\text{-}1},\,y_{2n},\,a),\,m(y_{2n\text{-}1},\,y_{2n},\,a),\,m(y_{2n},\,y_{2n+1},\,a),\\ &m(y_{2n\text{-}1},\,y_{2n+1},\,a)^{1/2s}\cdot m(y_{2n},\,y_{2n},\,a) \right\}^{\kappa} \end{split}$$
 $= \max \{m(y_{2n-1}, y_{2n}, a), m(y_{2n-1}, y_{2n}, a), m(y_{2n}, y_{2n+1}, a)\}^{\kappa}$ $= m(y_{2n-1}, y_{2n}, a)^{\kappa}.$ Also, we have $m(y_{2n+1}, y_{2n+2}, a) = m(Bx_{2n+1}, Ax_{2n+2}, a) = m(Ax_{2n+2}, Bx_{2n+1}, a)$
$$\begin{split} &\leq max \left\{m(Sx_{2n+2},\,Tx_{2n+1},\,a),\,m(Sx_{2n+2},\,Ax_{2n+2},\,a),\,m(Tx_{2n+1},\,Bx_{2n+1},\,a),\\ &m(Sx_{2n+2},\,Bx_{2n+1},\,a)^{1/2s}\cdot\,m(Tx_{2n+1},\,Ax_{2n+2},\,a)\right\}^{\kappa} \end{split}$$
$$\begin{split} &= \max\{m(y_{2n+1}, y_{2n}, a), \, m(y_{2n+1}, y_{2n+2}, a), \, m(y_{2n}, y_{2n+1}, a), \\ &m(y_{2n+1}, y_{2n+1}, a)^{1/2s} \cdot \, m(y_{2n}, y_{2n+2}, a)^{1/2s}\}^{\kappa} \end{split}$$
 $= \max \{m(y_{2n}, y_{2n+1}, a), m(y_{2n+1}, y_{2n+2}, a), m(y_{2n}, y_{2n+1}, a)\}^{\kappa}$ $= m(y_{2n}, y_{2n+1}, a)^{\kappa}.$ So in general we get $m(y_n, y_{n+1}, a) \le m(y_{n-1}, y_n, a)^k(2)$ repeating application of (2) yields $m(y_n, y_{n+1}, a) \le m(y_0, y_1, a)^{k}$ Continuing in the same way, we construct a sequence $\{x_n\}$ in X such

that $\sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n}$

 $x_{n+1} = fx_n, (x_n, x_{n+1}, a) \in E \text{ and } m(x_n, x_{n+1}, a) \le m(x_0, x_1, a)^{k^n} \text{ for each } n \in \mathbb{N}.$

Let m, $n \in N$, then by the multiplicative triangular inequality, we get

 $\begin{array}{l} m(y_n, & y_{n+m}, \\ a) \leq m(y_n, y_{n+1}, a)^{s^n}. & y_{n+m}, \\ m(y_{n+1}, y_{n+2}, a)^{s^{n+1}} \dots \dots \dots m(y_{n+m-1}, y_{n+m}, a)^{s^{n+m}} \\ \leq m(y_0, y_1, a)^{(ks)^n}. m(y_0, y_1, a)^{(ks)^{n+1}} \dots \dots \dots m(y_0, y_1, a)^{(ks)^{n+m}} \\ \leq m(y_0, y_1, a)^{\frac{(ks)^n}{1-ks}} \end{array}$

Letting $n \to \infty$, in above inequality, we get $m(y_n, y_{n+m}, a) \to_{b2} 1$. Hence the sequence $\{y_n\}$, and hence it's sub-sequence is 2-multiplicative Cauchy sequence. By the completeness of T(X), $Ax_{2n}=Tx_{2n+1}\to_{b2}y = Tx$ for some $x \in X$.

 $\begin{array}{ll} m(Sx_{2n},\ Tx,\ a) \leq m(Sx_{2n},\ Tx_{2n+1},\ a)^s. \ m(Tx_{2n+1},\ Tx,\ a)^s. \ m(Sx_{2n},\ Tx,\ Tx,\ Tx_{2n+1})^s \rightarrow 1 \ as \ n \rightarrow \infty. \end{array}$ Hence $Sx_{2n} \rightarrow Tx$ as $n \rightarrow \infty$. Now we have

- $\begin{array}{l} m(y, \,Bx, \,a) \leq m(y, \,Ax_{2n}, a)^{s} \cdot m(y, \,Bx, \,Ax_{2n})^{s} \cdot m(Ax_{2n}, \,Bx, \,a)^{s} \\ \leq m(y, \,Ax_{2n}, \,a)^{s} \cdot m(y, \,Bx, \,Ax_{2n})^{s} \cdot max\{m(Sx_{2n}, \,Tx, \,a), \\ m(Sx_{2n}, \,Ax_{2n}, \,a), \end{array}$
- $m(\text{Sx}_{2n}, \text{Mx}_{2n}, a), m(\text{Sx}_{2n}, \text{Bx}, a)^{1/2s} \cdot m(\text{Tx}, \text{Ax}_{2n}, a)\}^{\kappa s}$
 - $= 1.1.\max\{1, 1, m(y, Bx, a)\}^{ks}$
- which gives m(y, Bx, a) = 1 otherwise we get a contradiction $m(y, Bx, a) \le m(y, Bx, a)^{ks}$. So we get Bx = y = Tx. Since $BX \subseteq SX$, there exists an element $z \in X$ such that Tx = Bx = Sz.
- We have
- $m(Az, Sz, a) = m(Az, Bx, a) \le max\{m(Sz, Tx, a), m(Sz, Az, a), m(Tx, Bx, a), m(Tx, Bx$
- $m(Sz, Bx, a)^{1/2s} \cdot m(Tx, Az, a)\}^{\kappa}$
- $= \max \{1, m(Az, Sz, a), 1, m(Az, Sz, a)\}^{k}$

which gives m(Az, Sz, a) = 1 otherwise we get a contradiction $m(Az, Sz, a) \le m(Az, Sz, a)^k$.

So we obtain Az = Sz. Thus Az = Sz = Tx = Bx = u.

Now by R-weakly commutativity of the pairs $\{A,\,S\}$ and $\{B,\,T\}$ we get

 $m(Au, Su, a) = m(ASz, SAz, a) \le m(Az, Sz, a) = 1$

 $m(Bu, Su, a)=m(BTx, TBx, a) \le m(Bx, Tx, a) = 1$

which gives Au = Su and Bu = Tu.

Hence u is a common coincidence point of $\{A,\,S\}$ and $\{B\,\,T\}$ and thus the theorem proved.

REFERENCES

- A. Aghajani, M. Abbas, J. Roshan, Common fixed point of generalized weak contractive mappings in partiallyordered bmetric spaces, Math. Slovaca, 64 (2014), 941–960. https://doi.org/10.2478/s12175-014-0250-6.
- [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11.http://dml.cz/dmlcz/120469.
- [3] S. Czerwik, Nonlinear set-valued contraction mappings in bmetric spaces, Atti Sem. Mat. Fis. Univ. Modena,46 (1998), 263– 276. https://cir.nii.ac.jp/crid/1571980075066433280.
- [4] S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109.
- [5] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1993), 604–608.
- [6] T.L. Hicks, B.E. Rhoades, A Banach type fixed point theorem, Math. Japon. 24 (1979), 327–330. https://cir.nii.ac.jp/crid/1572824499579575040.
- [7] A.E. Bashirov, E.M. Kurpınar, A. Ozyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337(2008), 36-48.

- [8] Z. Mustafa, V. Parvaneh, J.R. Roshan, et al. b2-Metric spaces and some fixed point theorems, Fixed PointTheory Appl. 2014 (2014), 144. https://doi.org/10.1186/1687-1812-2014-144.
- [9] P. Singh, V. Singh, S. Singh, Some fixed points results using (ψ,φ)-generalized weakly contractive map in ageneralized 2metric space, Adv. Fixed Point Theory, 13 (2023), 21. https://doi.org/10.28919/afpt/8218.
- [10] S.H. Khan, P. Singh, S. Singh, et al. Fixed point results in generalized bi-2-metric spaces using θ-typecontractions, Contemp. Math. 5 (2024), 1257–1272
- [11] M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA (1972).
- [12] O. Ege and I. Karaca, Common fixed point results on complex valued Gb-metric spaces, Thai J. Math. 16, 3, 775-787, 2018.
- [13] O. Ege, C. Park and A. H. Ansari, A different approach to complex valued Gb-metric spaces, Adv. Difference Equ. 2020, 152, 1-13, 2020.
- [14] H. Huang, L. Paunovic, S. Radenovic, On some new fixed point results for rational Geragthy contractive mappings in ordered bmetric spaces, J Nonlinear Sci. Appl. 8(2015), No. 5, 800-807.
- [15] B. Surender Reddy, S. Vijayabalaji, N. Thillaigovindan, K. Punniyamoorthy, Emerging Frameworks: 2-Multiplicative Metric and Normed Linear Spaces, Mathematics and Statistics 12(2): 199-203, 2024.
- [16] Muhammad Usman Ali, Tayyab Kamran, Alia Kurdi;FIXED POINT THEOREMS IN B-MULTIPLICATIVE METRIC SPACES, U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 3, 2017, 107-116.
- [17] M. Iqbal, A. Batool, O. Ege and M. de la Sen, Fixed point of almost contraction in b-metric spaces, J. Math. 3218134, 1-6, 2020.
- [18] M. Iqbal, A. Batool, O. Ege and M. de la Sen, Fixed point of generalized weak contraction in b-metric spaces, J. Funct. Spaces 2021, 2042162, 1-8, 2021.
- [19] T. Kamran, M. Samreen and O.U Ain, A generalization of bmetric space and some fixed point theorems, Mathematics 5, 2, 2017.
- [20] V. Ozturk, D. Turkoglu, Fixed points for generalized alpha-psicontractions in b-metric spaces, J. Nonlinear Convex Anal. 16(2015), No. 10, 2059-2066.
- [21] W. Shatanawi, A. Pitea, R. Lazovic, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl. 2014, Art. No. 135.
- [22] M. Kumar, b2-Multiplicative Metric Space and A Fixed Point Theorem, Int J Stat. Appl. Math., Issue March 2025 Acceptted.
