INTRODUCTION

The island of Kalimantan hosts abundant diamond-bearing alluvial deposits for centuries but the location of their primary igneous source remains unknown[4, 7]. Dense vegetation rain forests and intense weathering have restricted the efforts in finding the relatively small diamond-bearing intrusive bodies. The failure to find the local primary source has led to a number of concepts to explain the presence of diamonds in Kalimantan. These include that, the deposits were carried from the north-western part of the Australian continent by rifting processes, or the deposits were transported along great distances from south-eastern part of Eurasia southwards through the major Asian river systems, or the deposits were brought to the surface through ophiolite obduction or exhumation of ultra high pressure metamorphic rocks, or the deposits were derived from local intrusive bodies[9]. Processing and analysis of a gravity dataset were carried out in the attempt to reveal the presence of the mantle plume structure, which is known to be one of the lithospheric feature responsible to the formation of diamonds[8]. The gravity data were obtained from the public domain data source at the website of topex.ucsd.edu. The processing of the gravity data includes the computation for gridding and levelling of the topex dataset to the Regional Gravity Maps of Kalimantan published by the Agency of Geology, the Ministry of Energy and Mineral Resources, Republic of Indonesia[1].

The levelled gravity dataset were subsequently reduced to obtain the extended or complete Bouguer gravity for further analysis. The analysis comprised of assessing the spatial aspects of the gravity field and the modelling of the gravity effects generated by the mantle plume structure.

MATERIALS AND METHODS

Computation and Levelling of Gravity Data: The downloaded dataset comprised of the topography and the free-air gravity grids. The dataset was obtained in the form of ASCII textfiles at a grid-size of one minute of arc, covering parts of the surrounding off-shore and land areas of Kalimantan Island, spanning the geographic coordinates of 106'E – 120'E ; 5'S – 8°N[9]. The dataset were converted to the UTM coordinates of Zone 49N and regridded at a size of 2000 m prior to the further processing. The computation of the dataset was performed firstly by evaluating the best-density fit for calculating the Bouguer and the regional terrain corrections. The best density value was obtained through the linear regression analysis of free-air gravity against topography grids. Using the value of the best-density fit, corrections for Bouguer slab were carried out to obtain the Simple Bouguer Gravity (SBG). The levelling of the dataset to the regional gravity maps of Kalimantan was performed on the recalculated SBG as the Regional Gravity Maps of Kalimantan were published in this format[1].

The levelling to the Region Gravity Maps of Kalimantan was carried out by subtracting an average value of 4 mGal from the processed topex dataset. Following the levelling of the SBG maps, corrections for the regional terrain effects were performed. The regional terrain corrections are, in general, small. More than 90 percents of grid stations of Kalimantan land area have terrain corrections of less than 0.9 mGal.

data were obtained from the public domain data source at the website of topex.ucsd.edu. The processing of the gravity data includes the computation for gridding and levelling of the topex dataset to the Regional Gravity Maps of Kalimantan published by the Agency of Geology, the Ministry of Energy and Mineral Resources, Republic of Indonesia[1].
The remaining elevated points, especially in the Central Range region, terrain corrections may reach 1 to 5 mGal but become higher at stations on hill and mountain tops, which may register in excess of 10 mGal. The computed regional terrain corrections grid were added to the SBG grid to obtain the Extended or Complete Bouguer Gravity (XBG or CBG). For the reason of convenience, from this point on, the Extended or Complete Bouguer Gravity shall be termed as the Bouguer gravity. Further analysis in this study made use of the Bouguer gravity grid.

Spatial Analysis: The spatial analysis deals with exploring the variations of the patterns of the images as well as classifying the levels of the Bouguer gravity in response to the lateral variations of sub-surface geology. The analysis aims at examining the shapes of the patterns of the images and classifying the levels of the Bouguer gravity, in the attempt to reveal the geometry of the mantle plume structure at depth. The analysis also attempts to investigate the conceivable traces of other structures which may have contributed to the occurrence of the diamonds.

Modelling: The modelling was performed in the manner of two-dimensional forward fitting, an approach in which, the computed gravity effects of a geometrically-designed model of a mantle plume structure were compared to the observed gravity along a selected transect line. The fitting of the computed model against the observed field was performed at the longest wavelength, throughout the entire observation window along the pertinent transect line. The analysis assumed that the modelled mantle plume is to have an average density of 2.87 gr/cc. The average density of the background mantle is 3.07 gr/cc and the average density of the crust is 2.67 gr/cc. Adequate density contrast between the plume model and the background mantle results in the buoyance force exerting on the plume to flow upward. This mechanism is believed to have promoted the development of hot spots and the presence of the diamond-bearing intrusive bodies.[6] Estimates of the depth to the rheological boundaries were carried out by analysing the power spectrum of the Bouguer gravity field[5]. Results of the power spectrum depth estimate analysis were used for providing constraints to the modelling of the plume structure.

RESULT AND DISCUSSION

Result of the processing and analysis are presented in Figs 1 through Fig 7. The map of the Topographic Images of Kalimantan is shown in Fig 1. The Map of the Free-air Gravity Images is depicted in Fig 2. The Linear Regression Analysis of free-air gravity against topography which results in the best-density fit of 2.19 gr/cc, is shown in Fig 3. Fig 4 shows the Map of the Bouguer Gravity Images. The result of the Depth Estimate Power Spectrum Analysis of the Bouguer gravity field is presented in Fig 5. Fig 6 shows the result of the modelling of the mantle plume structure and Fig 7 exhibits the Map of Depth Estimate of the Mantle Plume structure beneath Kalimantan Island. Throughout Kalimantan, the Map of the Topographic Images (Fig 1), is characterised by elevated zones of the Schwaner Mountains, the Muller Mountains and the Central Range Region, which occupy most of the south-west to central north-east part of the island, and to a narrower extent, of the Meratus-Boharis Zone to the south-east. Smaller dimension of elevated areas also occur at Mount Niut in the west and the Mangkaliat Headland in the east.

The elevated regions which occupy about 25 percent of the overall land areas (coloured in bright yellow to deep reds) vary in altitude from about 300 m to 3000 m. The remaining lowland areas extend within the elevation range from about 300 m down to several metres encompassing the ridges, channels, plateaus, hinterlands and along the coastal zones (coloured in dark to pale blue).
The best-fit for Bouguer gravity reduction was obtained by dividing the slope factor of the equation \(Y = 0.09188 \times X \) with the Bouguer slab constant of 2\(\pi G \) (approximately 0.042, where \(G \) is the gravitational constant). This approximately results in 2.19 gr/cc for the value of the best Bouguer reduction density, and was subsequently applied for recalculating the Bouguer slab corrections and the corrections for the regional terrain effects to produce the Extended Bouguer Gravity map shown in Fig 4.

By using the elastic thickness of the crust of 30 km and the assumed densities of the topography 2.19 gr/cc (Fig 3), the crust 2.67 gr/cc and the mantle 3.07 gr/cc, the Airy isostatics suggest that the Central Range Region is, at present, compensated only by about 20 percents, implying the depth of the crustal root of less than 31 km. A total isostatic compensation may be achieved when the mean value of the free-air gravity is very close to 0 mGal at which, the depth of the compensating crustal root reaches 34 km below sea level[2]. Free-air gravity maps are sensitive to elevation and tend to masked the deep geological bodies. The analysis of deeply seated geological features was carried out using the Bouguer gravity in which, effects of surface geology which masked the target of interest at depth were removed.

The map of the Bouguer Gravity Images (Fig 4) demonstrates a broad, SW-NE elongated pattern of low gravity which ranges in values from about -100 mGal to +10 mGal, covering about 25 percents of the overall land area of Kalimantan. This extensively broad pattern of low Bouguer gravity is interpreted as to represent the existence of the deep seated mantle plume beneath Kalimantan (Fig 5). Other patterns of gravity low which extent within the range from 0 mGal to about -15 mGal prominently show up in the area to the south, forming the two distinctive circular patterns of about 50 km in diameter, possibly expressing the presence of the lower density intrusive bodies. The top of the intrusives is estimated at about 2 km below sea level and the height is about 15 km. Further to the south-east, the gravity low of about 0 mGal to -15 mGal marks the extent of the Meratus-Bobaris Zone. The SW-NE oriented zone of gravity low is interpreted as to represent the Barito sedimentary basin. It extends for about 150 km long and 40 km wide with a total sediment thickness of about 8000 m. The obscured pattern of gravity low over the Mount Niut area in the west, which ranges in values from about 0 mGal to -10 mGal, is interpreted as the representation of a low density intrusive body. The intrusive body is about 8 km in diameter, 11 km high and the top of the structure is situated approximately at 600 metres below sea level. Within the area of the Mangkaliat Headland, the Bouguer gravity ranges from about +60 mGal to +120 mGal and higher. The gravity high over the Mangkaliat Headland is interpreted as to correspond to the locally elevated Mohorovičić discontinuity beneath the peninsula. The remaining land areas of Kalimantan are characterised by low to high gravity levels, registering from about +20 mGal to +110 mGal. In some areas where gravity level is within the range of about +20 mGal to +30 mGal and, in general, show elliptical patterns, they are interpreted as to represent sedimentary basins. Elongated patterns with gravity level of about +40 to +60 mGal, oriented W-E in the central west and oriented SW-NE in south-east parts of the island may be interpreted as to correspond to the obducted ophiolites or exhumed ultra high pressure metamorphic rocks.
The lithospheric scale gravity model of the mantle plume structure is shown in Fig 6. Transect analysis L1 (a) extends NW-SE for about 900 km. It starts in the off-shore area to the north west, passes over the landmass of Kalimantan and terminates in the off-shore area to the south east. Along transect L1 (a), Bouguer gravity varies from about -40 mGal to +120 mGal and the longest wave length of the signal is about 600 km. The gravity low which ranges from 0 mGal down to about -40 mGal clearly marks the presence of the plume structure at depth. The depth to the top of structure is about 160 km below sea level. Transect analysis L2 (b) extends SW-NE for about 1200 km. It starts in the land area to the south west, continues over the mountainous areas of the Schwaner, Muller and Central Range Region of Kalimantan and terminates in the off-shore area to the north east. Along transect L2 (b), Bouguer gravity varies from about -90 mGal to +80 mGal and the longest wave length of the signal is approximately 1200 km. The gravity low which ranges from 0 mGal down to about -40 mGal visibly indicates the existence of the plume structure at depth. The apex of the structure is approximately situated at 160 km below sea level. The mantle plume structure is elliptical in shape with the longer axis orientates SW-NE of about 600 km long and the shorter axis extends NW-SE of about 300 km wide (c). Fig 7 shows the map of the Depth Estimate of the Mantle Plume structure beneath Kalimantan Island. The map was generated using depth constraints obtained from the gravity modelling (Fig 6).

The gravity data processing and analysis presented in this study successfully demonstrate the presence of the mantle plume structure beneath Kalimantan Island. The existence of the mantle plume structure was speculated when first alluvial diamonds were found about a century ago. The upward rising buoyant flow of mantle plumes has been recognised as one of the mechanisms that govern the genesis of diamonds. Although limited on the resolution, the gravity dataset used in this study were able to pin-point the low-density tubular features most possibly expressing the structures of diamond-bearing intrusive bodies. Using the presently available data, other features such as hot spots and smaller intrusive bodies which may presence above the mantle plume are unresolvable. Higher resolution geophysical data are required in order to discriminate and pinpoint the rarely smaller size diamond-bearing structures above the mantle plume. Airborne gravity gradiometry and magnetics surveys at 50 m sampling intervals and 100 m line spacings is greatly recommended in order to obtain an adequately high resolution dataset for the exploration of primary diamonds in Kalimantan.

REFERENCES

5. Pirttijärvi, M.T., 2014, The FOURPOT program version 1.3b. Potential field data processing and analysis using 2-D Fourier transform. email: markku.pirttijarvi@gmail.com

8. Topex.ucsd.edu, Extract topography or gravity data from global 1 – minute grids in ASCII XYZ-format.
