ISSN: 0976-3376

RESEARCH ARTICLE

ON THE PROJECTIVE ALGEBRA OF FIRST APPROXIMATE MATSUMOTO METRIC

${ }^{* 1}$ Natesh Netaganta Bhovi and ${ }^{2}$ Narasimhamurthy Senajji Kampalappa
${ }^{1}$ Department of Mathematics, Govt. Science College, Chitradurga, Karnataka, India
${ }^{2}$ Department of Mathematics, Kuvempu University, Shimoga, Karnataka, India

ARTICLE INFO

Article History:

Received $17^{\text {th }}$ February, 2023
Received in revised form
$19^{\text {th }}$ March, 2023
Accepted $28^{\text {th }}$ March, 2023
Published online $27^{\text {th }}$ April, 2023

Abstract

In the present paper, we have introduce a special metric, called First Approximate Matsumoto metric is analyzed as a certain on an n dimensional space with the projective Algebra and Lie Algebra of the projective group and this metric is characterized as certain Lie sub algebra of the projective algebra. Further, which is devoted to studying the condition of Finsler space of constant flag curvature and vanishing S curvature admits a non Riemannian space of affine projective vector field with First Approximate Matsumoto metric is Berwald space.

Keywords:

Finsler space, First Approximate
Matsumoto metric, Projective Vector
fields, Projective Algebra, Lie Algebra,
Lie sub algebra.

Citation: Natesh Netaganta Bhovi and Narasimhamurthy Senajji Kampalappa. 2023. "On the projective algebra of first approximate matsumoto metric ", Asian Journal of Science and Technology, 14, (04), 12450-12454.

Copyright©2023, Natesh Netaganta Bhovi and Narasimhamurthy Senajji Kampalappa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces [14].

As the projective algebra of a metric is defined in terms of its geodesic spray and it is defined for any spray and coincides for projectively equivalent sprays. Itis well known that in an n-dimensional Riemannian space of constant curvature the dimensionof $p(M, F)$ is $n(n+2)$ and vice-versa . This weaves an overture for an analogue problem of Randers space. If we have $s_{j}^{i}=0$, then the respective projective algebra of metric F and $p(M, \alpha)$ of α coincide. The important case is considerable when $s_{j}^{i} \neq 0$ and uncovers a non-Riemannian feature of Finsler metrics in comparison with the analogue Riemannian case. A projective vector field is said obe C-projective if its projective factor p has closeness property. In the recent works [3] projective algebra of Randers metrics are introduced and the Lie algebras of C - projective vector fields and the well known non- Riemannian curvature and H - curvature is invariantsof the algebras of C - projective vector fields are also introduced. The concept of (α, β) - metric was introduced in 1972 by M.Matsumoto and studied by M.Hachiguchi (1975), Y. Ichijjyo (1975). S. Kikuchi (1979), C.Shibata (1984), Gouree Shankar and Ravindra Yadav (2011), Narasimhamurthy S.K. and Chethan B.C.(2015).[4]The S-curvature is constructed by Shen on Finsler manifolds. A Finsler metric F on an n -dimensional manifold M is said to have isotropic S-curvature if isotopic $S=(n+1) c(x) F$, for some scalar function c on M. It is known that some of Randers metrics are of Scurvature [6]. The examplesof (α, β) - metrics are Randers metric, Kropina metric, Matsumoto metric. The present paper is devoted to studying the condition for a Finsler space with (α, β) metric $F=\alpha+\beta+\frac{\beta^{2}}{\alpha}$ is Berwald space.

[^0]
PRELIMINARIES

Let M be an n-dimensional smooth manifold and $\pi: T M \backslash\{0\} \rightarrow M$ the natural projection from the tangent bundle. Let (x, y) be a point of $T M$ with $x \in M, Y \in T x M$ and let
$\left(x^{i}, y^{i}\right)$ be the local coordinates on $T M$ with $\mathrm{y}=y^{i} \quad \partial /\left(\partial x^{i}\right)$.
Finsler metric on M is a function $F: T M \rightarrow[0, \infty)$ satisfying the following properties

- Regularity: $F(x, y)$ is smooth in $T M \backslash\{0\}$
- Positive homogeneity: $F(x, \lambda y)=\lambda F(x, y)$ for $\lambda>0$.
- Strong concavity: The fundamental quadratic form $g=g_{i j}(x, y) d x^{i} \otimes d x^{j}$ is positive definite,

Where
$g_{i j}=\frac{\partial^{2}(F)^{2}}{2 \partial y^{i} \partial y^{j}}, C_{i j k}=\frac{1}{4}[F]_{y^{i} y^{j} y^{k}}^{2}=\frac{1}{2} \frac{\partial g_{i j}}{\partial y^{k}}$.
Define symmetric trilinear form $C=C_{i j k} d x^{i} \otimes d x^{j} \otimes d x^{k}$ on $T M \backslash\{0\}$. We call C is the Cartan torison. Let F be a Finsler metric on an n - dimensional manifold M. The canonical geodesic $\sigma(t)$ of F is characterized by
$\frac{d^{2} \sigma^{i}(t)}{d t^{2}}+2 G^{i}(\sigma(t), \dot{\sigma}(t))=0$,
where G^{i} are the geodesic coefficients having the expression
$G^{i}=\frac{1}{4} g^{i j}\left\{\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-[F]^{2}{ }_{x}{ }^{l}\right\}$ with $(g)^{i j}=(g)_{i j}{ }^{-1}$ and $\dot{\sigma}=\frac{d \sigma^{i}}{d t} \frac{\partial}{\partial x^{i}}$.
A spray on M is a globally C^{∞} vector field G on $T M \backslash\{0\}$ which is expressed in local coordinates as follows
$G=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i} \frac{\partial}{\partial y^{i}}$.
Assume the conventions:
$G_{j}^{i}=\frac{\partial G^{i}}{\partial y^{i}}, G_{j k}^{i}=\frac{\partial G_{j}^{i}}{\partial y^{k}}, G_{j k l}^{i}=\frac{\partial G_{j k}^{i}}{\partial y^{l}}$.
Note that $G_{j k}^{i}$ gives rise to a torison -free connection in $\pi^{*} T M$ called the Berwald connection in [5]. The function G_{j}^{i} define a non linear connection HTM spanned by horizontal frame $\left\{\frac{\partial}{\partial x^{i}}\right\}$, where $\frac{\delta}{\delta x^{j}}-G_{j}^{i} \frac{\partial}{\partial y^{i}}$. The nonlinear connection HTM splits TTM as TTM $=k e r \pi_{*} \oplus$ $H T M$, see[5]. If $G_{j k}^{i}(x, y)$ are functions of $x \in M$, equivalently at every point of F if and only if $G_{j k l}^{i}=0$ then the Finsler metric is called a Berwald metric.

Projective Vector fields on special $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ - Metric

In this section, Finsler space of a special (α, β) - metric is analyzed as a certain Lie sub algebra of the projective algebra $p(M, \alpha)$. Further, we proved that this metric is Berwald space.

Let (M, α) be a Riemannian space $\left(\alpha=\sqrt{a_{i j} y^{i} y^{j}}\right)$ and $\left(\beta=b_{i}(x) y^{i}\right)$ on a manifold M then $\|\beta\|_{x}=\sup _{y \epsilon} M \frac{\beta(y)}{\alpha(y)}<1$. The Finsler (α, β)-metric, $F=\alpha+\beta+\frac{\beta^{2}}{\alpha}$ is called a First Approximate Matsumoto metric on M. G_{α}^{i} and G^{i} denote the geodesic spray coefficients of α and F and the Levi-Civita connection of α by ∇. Define $\nabla_{j} b_{i}$ by $\left(\nabla_{j} b_{i}\right) \theta^{j}=d b_{i}-b_{j} \theta_{i}^{j}$, where $\theta^{i}=d x^{i}$, $\theta_{i}^{j}=\tilde{\gamma}_{i k}^{j} d x^{k}$ and ∇ is the covariant derivation of α. Let us put
$r_{i j}=1 / 2\left(\nabla_{j} b_{i}+\nabla_{i} b_{j}\right), s_{i j}=1 / 2\left(\nabla_{j} b_{i}-\nabla_{i} b_{j}\right)$,
$s_{j}^{i}=a^{i h} s_{h j}, \quad s_{j}=b_{i} s_{j}^{i}$
$e_{i j}=r_{i j}+b_{i} s_{j}+b_{j} s_{i}$
Clearly, β is closed if and only if $s_{i j}=0$. Let $s_{j}=b^{i} s_{i j}, s_{j}^{i}=a^{i j}, s_{0}=s_{i} y^{i}, s_{0}^{i}=s_{j}^{i} y^{j}, r_{00}=r_{i j} y^{i} y^{j}$. The geodesic coefficients G^{i} of F and G_{α}^{i} of α are related as follows
$G^{i}=G_{\alpha}^{i}-\frac{1}{b^{2}}\left(\frac{r_{00}}{F}+s_{0}\right) y^{i}-\frac{F}{2} s_{0}^{i}$
Let V is projective vector field on (M, F) then it is Douglas tensor $L_{\hat{v}} D_{j k l}^{i}=0$. The sprays G^{i} of F and $\hat{G}^{i}=G_{\alpha}^{i}+T^{i}$ and hence
$G^{i}=G_{\alpha}^{i}-\frac{1}{b^{2}}\left(\frac{r_{00}}{F}+s_{0}\right) y^{i}-\frac{F}{2} s_{0}^{i}$
$D_{j k l}^{i}=\widehat{G}_{j k l}^{i}=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left\{T^{i}-\frac{1}{n+1} T_{y^{m}}^{m} y^{i}\right\}$
$T^{i}=\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i}$
$Q=\frac{\varphi^{\prime}}{\varphi-s \varphi^{\prime}}=\frac{1+2 s}{1-s^{2}}$
$\Psi=\frac{1}{2} \frac{\varphi^{\prime \prime}}{(\varphi-s \varphi)+\left(b^{2}-s^{2}\right) \varphi^{\prime \prime}}=\frac{1}{1-3 s^{2}+2 b^{2}}$
$T^{i}=\frac{1+2 s}{1-s^{2}} \alpha s_{0}^{i}-\frac{1}{1-3 s^{2}+2 b^{2}}\left\{\left(\frac{1+2 s}{1-s^{2}}\right) 2 \alpha s_{0}-r_{00}\right\} b^{i}$
$T_{m}^{m}=\varphi^{\prime} s_{0}+\Psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left(r_{00}-2 \varphi \alpha s_{0}\right)$
$+2 \Psi\left[r_{0}-\varphi^{1}\left(b^{2}-s^{2}\right) s_{0}-\varphi s s_{0}\right]$
On calculation, $T_{m}^{m}=0$.
From this and take $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=0$, then we have
$L_{\hat{v}} D_{j k l}^{i}=L_{\hat{v}} T_{. j . k . l}^{i}=L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}_{. j . k . l}=0$
Therefore, we have $H^{i}(x, y),(i=1,2,3, \ldots n)$ is quadratic in y then
$L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=H^{i}$
Now, let us take $t_{i j}=L_{\hat{v}} a_{i j}$.
Observe that $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=\frac{t_{00}}{2 \alpha} s_{0}^{i}+\frac{\alpha(1+2 s)}{1-s^{2}} L_{\hat{v}} s_{0}^{i}$
Using (7), (6) can be written as
$t_{00} s_{0}^{i}+2 \alpha^{2}(1+2 \alpha) L_{\hat{\nu}} s_{0}^{i}$

$$
\begin{equation*}
=\left(1-s^{2}\right) H^{i} . \tag{8}
\end{equation*}
$$

Here we see that $\alpha^{2}=a_{i j}(x) y^{i} y^{j}, t_{00} s_{0}^{i}=\left(t_{i j}(x) s_{k}^{i}(x) y^{i} y^{j} y^{k}\right)$ and
$L_{\hat{v}} s_{0}^{i}=\left(L_{v} s_{k}^{i}\right)(x) y^{k}$ are polynomials in $y^{1}, y^{2} \ldots . y^{n}$.
Hence, the 1 hs of (8) is a polynomial in $y^{1}, y^{2} \ldots . y^{n}$ for all i,
but the rh s is not. It follows that $H^{i}=0$ for all i, (7) leads
as $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=0$.
From [2] geodesic coefficients of F are investigated as follows
$G_{\alpha}^{i}=G_{\alpha}^{a}{ }_{\alpha}^{i}-\frac{\alpha(1+2 s)}{1-s^{2}}-\left(\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}-r_{00}\right) \frac{1}{1-3 s^{2}+2 b^{2}}\left\{b^{i}+\alpha^{-1}\left(\frac{2+5 s+5 s^{2}}{2\left(1+s+s^{2}\right)\left(1-3 s^{2}+2 b^{2}\right)}\right) y^{i}\right\}$
$G_{\alpha}^{i}=G^{a i}{ }_{\alpha}-\left(\frac{\alpha(1+2 s)}{1-s^{2}} s_{o}-r_{00}\right)\left(\frac{2+5 s+5 s^{2}}{2\left(1+s+s^{2}\right)\left(1=3 s+2 b^{2}\right)}\right) \alpha^{-1} y^{i}+\frac{\alpha(1+2 s)}{1-s^{2}} s_{o}^{i}$.
Since $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=0$ and $L_{\hat{v}} G^{i}=p y^{i}$, from this we have
$L_{\hat{v}} G_{\alpha}^{i}=L_{\hat{v}}\left\{G_{\alpha}^{i}-\left(\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}-r_{00}\right)\left(\frac{2+5 s+5 s^{2}}{2\left(1+s+s^{2}\right)\left(1-3 s+2 b^{2}\right)}\right) \alpha^{-1} y^{i}\right\}=p y^{i}$
and finally we obtain
$L_{\hat{v}} G_{\alpha}^{i}=L_{\hat{v}}\left\{p+\left(\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}-r_{00}\right)\left(\frac{2+5 s+5 s^{2}}{2\left(1+s+s^{2}\right)\left(1-3 s+2 b^{2}\right)}\right) \alpha^{-1}\right\} y^{i}$.

It shows that, the vector field V is (M, F).
Conversely, suppose V is (M, F) i.e., $L_{\hat{v}}=w_{0} y^{i}$ for some 1 -form, $w_{0}=w_{k}(x) y^{k}$ on M and $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=0$.
From (3.9) it follows
$L_{\hat{v}} G^{i}=L_{\hat{v}}\left\{G_{\alpha}^{i}-\left(\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}-r_{00}\right)\left(\frac{2+5 s+5 s^{2}}{2\left(1+s+s^{2}\right)\left(1-3 s+2 b^{2}\right)}\right) \alpha^{-1} y^{i}+\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}$,
$L_{\hat{v}} G^{i}=L_{\hat{v}} G_{\alpha}^{i}-L_{\hat{v}}\left\{G_{\alpha}^{i}-\left(\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}-r_{00}\right)\left(\frac{2+5 s+5 s^{2}}{2\left(1+s+s^{2}\right)\left(1-3 s+2 b^{2}\right)} \alpha^{-1}\right)\right\} y^{i}$.
$L_{\hat{v}} G^{i}=\left\{w_{0}-L_{\hat{v}}\left\{G_{\alpha}^{i}-\left(\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}-r_{00}\right)\left(\frac{2+5 s+5 s^{2}}{2\left(1+s+s^{2}\right)\left(1-3 s+2 b^{2}\right)} \alpha^{-1}\right) y^{i}\right\}\right\}$.
Which implies that V is (M, F). Hence we state the following
Theorem 1. Let $\left(M, F=\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)$ be a special (α, β)-metric and V be a vector field on M. Then V is $F-$ projective if and only if V is (M, α) and $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=0$.

By theorem (1) and observe that $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=0$.
Let us suppose $t_{i j}=L_{\hat{v}} a_{i j}$ and $L_{\hat{v}}\left\{\frac{\alpha(1+2 s)}{1-s^{2}} s_{0}^{i}\right\}=0$ and $s_{j}^{i} \neq 0$.
Now, let us take $t_{i j}=L_{\hat{v}} a_{i j}$ and $L_{\hat{v}}\left\{\frac{\alpha}{1-2 s} s_{0}^{i}\right\}=0$.
Therefore (8) becomes $\left\{t_{00} s_{0}^{i}+2 \alpha^{2} L_{\hat{v}} s_{0}^{i}\right\}=0$
It follows that α^{2} divides $t_{00} s_{0}^{i}$ for all i. This is equivalent to $s_{j}^{i}=0$. Which contradicts since $s_{j}^{i} \neq 0$.
Therefore V is conformal vector field on (M, α).
That is α - projective then there is a constant μ such that $L_{\hat{v}} a_{i j}=2 \mu a_{i j}$.
From (10) we obtain $L_{v} s_{j}^{i}=-\mu s_{j}^{i}$.
Observe that $\quad L_{v} s_{i j}=\left(L_{v} a_{i k}\right) s_{j}^{k}$,
$=\left(L_{v} a_{i k}\right) s_{j}^{k}+a_{i k} L_{v} s_{j}^{k}$,
$=2 \mu s_{i j}-\mu s_{i j}$,
$=\mu s_{i j}$,
It shows that $L_{\hat{v}} d \beta=\mu d \beta$. Hence we state the following
Lemma 1. Let $\left(M, F=\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)$ be a special (α, β) - metric on an n-dimensional. If $s_{j}^{i} \neq 0$ then the vector field V is ($\left.M, F\right)$ if and only if V is a (M, α) homothety and $L_{\hat{v}} d \beta=\mu d \beta$, where $L_{\hat{v}} a_{i j}=t_{i j}=2 \mu a_{i j}$.

Remark 1. From lemma (1), since $s_{j}^{i}=0$, then V is (M, F) projective vector filed, but it is not a α-homothety.
Since F is a vanishing S - curvature [1] and (M, α).
From these we have $\alpha^{\Psi} r_{00}=2 \sigma(x)\left[\beta^{2}-\left(1-\alpha^{\Psi}\right)-\alpha(2 \beta-1)\right]$.
If the function Ψ and $\Psi(x, y)$ is linear w. r.t. y then we have $L_{\hat{v}} G^{i}=\Psi y^{\mathrm{i}}$.
Applying theorem (1) we have,
$L_{\hat{v}} G^{i}=V_{\hat{v}} \tilde{G}^{i}+L_{\hat{v}}\left(\sigma\left(\frac{\beta^{2}\left(1-\alpha^{\Psi}\right)-\alpha(2 \beta-1)}{\alpha^{\Psi} y^{i}}\right)\right)-L_{\hat{v}} S_{0} y^{i}=\Psi y^{i}$.
Putting $t_{i j}=L_{\hat{v}} a_{i j}$ and $L_{\hat{v}}=0$, it implies that $t_{00}=L_{\hat{v}} \alpha^{2}$ and

$$
\begin{equation*}
L_{\hat{v}} \tilde{G}^{i}+\left\{\frac{\beta^{2}\left(1-\alpha^{\Psi}\right)-\alpha(2 \beta-1)}{\alpha^{\Psi}}\right\} L_{\hat{v}} \sigma y^{i}+\frac{t_{00}}{2 \alpha} c y^{i}-L_{\hat{v}} S_{0} y^{i}=\Psi y^{i} \tag{11}
\end{equation*}
$$

Recall that the natural coordinates system $\left(x^{i}, y^{i}\right), \varphi^{-1}(U)$ and $x \in U$, we treating the above equation as a polynomial in $y^{1}, y^{2}, \ldots y^{n}$.
Multiplying (11) by α. Then we obtain,

$$
\begin{aligned}
& \operatorname{Rat}^{i}+\alpha \operatorname{Irrat}^{i}=0, i=1,2, \ldots n, \\
& \operatorname{Rat}^{i}=\alpha^{2} L_{\hat{v}} \sigma y^{i}+\frac{1}{2} \mu a_{i j} \sigma y^{i} \\
& \operatorname{Irrat}^{i}=L_{\hat{v}} \tilde{G}^{i}-\left(\left[\frac{\beta^{2}\left(1-\alpha^{\psi}\right)-\alpha(2 \beta-1)}{\alpha^{\psi}}\right] L_{\hat{v}} \sigma+L_{\hat{v}} S_{0}-\Psi\right) y^{i} .
\end{aligned}
$$

where

Now, we assume that $s=0$. By Lemma (1), (M, F) must be locally projectively flat, otherwise V is α - homothety. Which is a contradiction to that V is α-homothety.

Hence $s_{i j}=0$ and by $e_{i j}=r_{i j}+b_{i} s_{j}+b_{j} s_{i}$, which implies $r_{i j}=0$. Which is equivalent to $\nabla_{i} b_{j}=0$ and (M, F) is a Berwald space. Hence we have
Theorem 2. Let $\left(M, F=\alpha+\beta+\frac{\beta^{2}}{\alpha}\right)$ be a special (α, β)-metric of vanishing $S-$ curvature. If (M, F) admits a (M, α) then it is a Berwald space.

CONCLUSION

In this paper, we studied the projective algebra of (α, β) - metric $F=\alpha+\beta+\frac{\beta^{2}}{\alpha}$ of constant flag curvature and vanishing S- curvature admits a non α-affine projective vector field is Berwald space. Also, we discussed some results on First Matsumoto space.

Acknowledgement

The authors would like to express their grateful thanks to the referees for their valuable comments. This work was supported in part by my lovely Professor S.K. Narasimhamurthy for our continuous help and encouragement.

REFERENCES

[1]. Z. Shen, Xinyue cheng, (2009). A class of Finsler metrics with isotropic S- curvature, Israel Journal of Mathe- matics, November, preprint.
[2]. Mehdi Rafie-Rad and Bahman REZAEI, (2011). On the Projective Algebra of Randers Metric of Constant Flag Curvature Symmetry, Inerrability and Geometry Methods and Applications, SIGMA 7, 085, 12 pages.
[3]. H. Najafi, (2011). A. Tayebi, A new quantity in Finsler geometry C H Acad. sci. paris, ser I, volume 349, Issues 1-2, 81-83.
[4]. A. Tayebi, E. Peyghan and H. Sadeghi, (2012). On a class of locally dually flat Finsler metrics with isotropic s- curvature IJST A ${ }_{3}$, 377-382.
[5]. A.Shirafkan and Rae.Rad, (2018). On the C-projective vector fields on Ran ders spaces, Research Gate, 27-November, preprint.
[6]. Shen Z.M., (2008). Xing H., On Randers metrics of isotropic S-curvature, Acta Math. Sin. (Engl. Ser.) 24, 789-796.
[7]. Shen Z., (2002) . Projectively flat Finsler metrics of constant flag curvature, Trans. Amer.Math. Soc. 355,1713-1728.
[8]. Najafi B.,Shen Z., (2008).Tayebi A.,Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata 131, 87-97.
[9]. Yamauchi K., (1979). On infinitesimal projective transformations of a Riemannian manifold with constant scalar Curvature, Hokkaido. Math. J. 8, 167-175.
[10]. Barnes, (1993). A.Projective collineations in Einstein spaces, Classical Quantum Gravity 10, 1139-1145.
[11]. Yano K., (1957).The theory of Lie derivatives and its applications, North Holland, Amsterdam.
[12]. Shen Y., Yu Y., (2008). On projectively related Randers metric, Internat. J. Math. 19, 503-520.
[13]. M. Matsumoto, (1991). Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 30, 15-20 .
[14] Z. Shen, (2019). Differential geometry of spray and Finsler spaces, Kluwer Journal of Advances in Mathematics and Computer science, 31(4), ISSN: 2456-9968, 1-8 [].

[^0]: *Corresponding author: Natesh Netaganta Bhovi
 Department of Mathematics, Govt. Science College, Chitradurga, Karnataka, India

