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ARTICLE INFO    ABSTRACT 
 

 

Hair follicle stem cells (HFSCs) are undifferentiated, self-renew and multipotent cells in skin. Androgenetic 
Alopecia (AGA) is affecting 85% of males and 40% of females throughout the world. Its exact cause is unknown 
Androgens play a pivotal role in AGA etiology, but it is associated with other diseases, such as; hyper-
androgenemia, hypothyroidism, prostate cancer, nutritional deficiencies, autoimmune diseases and even COVID-19. 
Multiple treatments have been considered for androgenetic alopecia, but, it was not satisfactory results. In 
individuals with AGA, hair follicle stem cells in bulge remain but are quiescent and it has been suggested that this 
may make AGA reversible. The activation of these cells through re-activation of signaling pathways such as wnt/β-
catenin pathway may be the most effective treatment strategy for AGA. Five known signaling pathways which 
control HFSCs functions, are; wnt/β-catenin, sonic hedgehog (shh), notch, bone morphogenesis protein(BMP) and 
apoptosis signaling pathways. The Wnt pathway plays an important role in hair growth and regulates HFSC 
expression during the telogen-anagen phase transition, Shh pathway induces quiescent HFSCs to be activated and 
initiate to proliferate, Notch signaling plays a vital role in the activation, proliferation, differentiation of HFSCs and 
metabolite generation, then determines the fate of HFSCs and BMP is involved in HFSCs differentiation. The most 
recent attempt to treat AGA is to activate quiescent HFSCs in bulge using signaling pathways such as wnt/β-catenin. 
The golden goal of all research is to gain a deeper understanding of disease pathomechanisms to encourage the 
development of more effective treatments with greater specificity and less or zero adverse effects. This is ambitious 
but achievable dream. 
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INTRODUCTION 
 
Hair follicle stem cells (HFSCs) alike other stem cells (SCs), are 
undifferentiated, self-renew and pluripotent cells that to be resident in 
dermis adjacent epidermal cells. These cells maintain proliferation 
potency for all over life (1-3). Hair shaft emerge of a hair follicle 
while 2-6 hair shaft grow out of each hair follicle. Hair follicle(HF) 
functions including: thermoregulation, physical protection, sensory 
input, and decorative purposes for social interactions (4). A healthy 
human scalp has 120000 follicles (5). Androgenetic alopecia (AGA) 
is the most commonhair loss, affecting 85% of males and 40%of 
females, all around the world (6). Several factors, such as genetics, 
hormones, and systemic diseases are main leading cause of AGA(6). 
By the way, its exact cause is unknown. AGA epidemiological factors 
are different and depend on age and race. Based on earlier prevalence 
data,up 30% of white men will have AGA by the age of 30 years, up 
to 50% by 50 years, and 80% by 70 years (7-10). Chinese, Japanese, 
and African American people are less affected than Caucasians(11). 
Hair growth can be disrupted by HFSCs niche pathology, e.g. 
dysfunction of dermal papilla cells in androgenetic alopecia (12). 
Although, androgens play a pivotal role in AGA etiology, but it is 
associated with other diseases, such as; hyper-androgenemia (13), 
hypothyroidism (14), prostate cancer(15), nutritional deficiencies 
(16), autoimmune diseases (17) and even COVID-19(6).  

 
Indeed, Genetic polymorphism including androgen receptor (AR), 
7p21, 20P11, and 2Q35 susceptibility genes on the X chromosome, 
cigarette smoking, alcohol intake, eating habits such as: high 
consumption of meat and insufficient fruits and vegetables, sleep 
disturbance, bacterial and viral infections, infection SARS-CoV-2 
(COVID-19), Cancers e.g. prostate cancer, thyroid cancer, and 
metabolic diseases and of course, psychological disorders such as; 
Depression, anxiety, obsessive–compulsive disorder, and loss of 
confidence are high risk factors for AGA(6). At present, treatments 
include drug and non-drug therapy. The current pharmacological 
treatment for AGA includes androgen metabolism modulators. Other 
treatment strategies are nutrient therapy, natural products, low-level 
light therapy and hair transplantation surgery. The use of Wnt 
activators and SFRP1 antagonism is the latest therapeutic strategy to 
treat hair loss, especially in AGA(18). Multiple treatments have been 
considered for AGA, but it was not satisfactory results. However, 
efforts are still ongoing. In this paper, as much as possible, we 
collected and updated all findings on AGA pathophysiology and its 
therapeutic strategies that have been applied in clinical level. Local 
microenvironment or niche of HFSCs is a complex signaling network 
of biomolecules such as; cytokines, growth factors and other 
stimulators around them that regulate HFSCs activities. Control of 
HFSCs either physiological or pathological states is done by a variety 
of signaling pathways such as wnt/β-catenin signaling pathway and so 
on which will be explained further. In the first part of the review, we 
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focused on reactivating signaling pathways of HFSCs to regenerate 
hair follicles and subsequently regrow hair. In the second part, 
various treatment strategies for AGA are described. First of all, we 
take a look at the physiology of hair growth.  
 

DISCUSSION  
 
Hair cycle: Naturally, HFs from outgrowth to downfall hairs, 
undergo three main stages (1, 19-25): 
 
A) anagen, hair growth phase 
B) catagen, regressive phase (stop hair growth) 
C) telogen, resting phase (hair loss) 
 
Each stage of hair cycle continues 2-10 years, 2-4 weeks and 2-3 
month, respectively (21). Hair follicles along with sebaceous and 
sweat glands are skin appendages that with extracellular matrix, 
fibroblasts and vascular endothelial cells make up the connective 
tissue of the dermis. Skin is made of two layers, which are from 
surface to depth; epidermis and dermis. In the same way, dermis is 
composed three layer, which are: papillary dermis, reticular dermis 
and hypodermis. Hair follicles originate from the hypodermis (Figure 
1). It is estimates that humans have 5 million hair follicles with two 
types of hair (1, 26): 
 
a. Terminal hair that is long, thick and pigmented 
b. Villus hair that is short, thin and without pigment 
 
Hair follicles are made up of three parts; 
 
 1. Outer root sheath (ORS), the upper part of hair follicle which 

connected to epidermis (deep purple) 
 2. Inner root sheath (IRS), the middle part of hair follicle which is 

located between the hair shaft in the center and the outer root 
sheath (ORS) peripherally (light purple) 

 3. Hair shaft (HS), which is made by differentiating IRS.  
 
Each hair follicle produces 2-6 hair shafts. In human, hair follicles are 
formed by epithelial and mesenchymal cells interaction(21). At the 
end of each hair follicle, there is a bulb consist of dermal papilla 
region in the center of which are dermal papilla cells (DPCs). 
 

 
 

Figure 1. Hair follicle structure 
 

These cells are undifferentiated and strongly proliferating which are 
necessary for hair follicles formation. Hair growth cycle and 
regeneration are mainly controlled by these cells (27, 28). Interaction 
between HFSCs and DPCs play crucial role in hair cycle regulation 
(29-31). Hair as nail and sebaceous gland is one of skin appendages 
which is made up by epithelial- mesenchymal interaction. Epithelial-
mesenchymal interaction is inevitable not only for embryonic HF 
morphogenesis but also for postnatal hair cycling (32). Keratinocytes 
from epidermis and fibroblasts from dermis provide the basis for the 

aforementioned interaction. Wnt/β-catenin signaling may be required 
for mentioned interaction(33). In the embryonic period, the stages of 
hair follicle development are; placode, hair germ, hair peg, hair 
follicle, respectively (19).See more Figure 2. For postnatal follicular 
epithelial-mesenchymal interaction, although DP cells provide 
signaling ligands, such as TGF-β2 and FGF-7(34) to activate HFSCs 
for a new hair cycle, signals from epithelial cells are also required for 
proper anagen entry (35). HFSCs are located in the special of ORS 
called the bulge. The bulge is located adjacent the arrectorpili muscle 
into the HF epithelium below the sebaceous gland and encapsulated 
by immune privilege area (36). HFSCs are first identified as slow-
cycling label-retaining cells located in the bulge epithelium (12) and 
today, those are called bulge stem cells which are relatively quiescent 
stem cells. These cells immigrate downward dermal papilla region 
where to form secondary hair germ stem cells. 
 

 
 

Recent cells are more active than bulge stem cells. Secondary hair 
germ stem cells are seen only in telogen phase. These cells are 
activated, proliferated and differentiated, not only cause the formation 
of hair follicle and sebaceous gland, but also immigrate to the 
epidermis and involve in epithelium regeneration (1, 26). Some 
researchers believe that bulge stem cells are separate from secondary 
hair germ stem cells (37, 38). By the way, HFs regeneration from 
telogen to anagen is done by the coordinated activation of these two 
cell populations: primed HFSCs in the secondary hair germ are first 
activated, followed by the activation of quiescent HFSCs in the bulge 
later (39). In anagen, HFSCs give rise to hair germs, then the transient 
amplifying cells in the matrix of the new follicle proliferate rapidly to 
form a new hair filament (39). In catagen, hair follicle stem cells are 
maintained in the bulge and in the transition from telogen to anagen, 
the signals from the DP stimulate the hair germ and quiescent bulge 
stem cells to become activated (37). 
 

Taken together, HFSCs include (4, 40-43): 
 

a- Epithelial stem cells of the bulge with slow-cycle 
b- Epithelial progenitors in the secondary hair germ with fast-cycle 
c- Dermal papilla cells in dermal papilla region of bulb 
d- Melanocyte stem cells 
 

HFSCs functions are regulated by intra and extra-follicular signals. 
Currently, the known intra-follicular signals are all proteins and 
receptors which stimulate cytoplasmic signaling pathways, such as 
(44, 45): 
 
 1. Wnt/β catenin pathway 
 2. Sonic hedgehog (shh) pathway 
 3. Notch pathway 
 4. Bone morphogenetic proteins (BMP) pathway  
 5. Apoptotic pathway 
 6.  phosphoinositol 3 kinase/AK strain transforming(PI3K/AKT) 

pathway 
 

Extra-follicular signals have been known including: 
 

 1. Intradermal adipocytes (46, 47) 
 2. Dermal fibroblasts (48, 49) 
 3. Blood vessels (50, 51) 
 4. Lymphatic vessels (52, 53) 
 5. Peripheral nerves (54, 55) 
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Some of these mediators are positive regulator, such as; wnt proteins 
(56) and growth factors such as fibroblast growth factor(FGF), 
platelet derived growth factor (PDGF) (47) and so on, that promote 
hair growth. Likewise, other mediators are negative regulators, such 
as; BMP which prevents hair growth (57). Hair growth cycle can be 
deregulated by paracrine factors from the follicle itself and/or from 
the surrounding dermal tissue, or by endocrine factors
loss (37, 40). 
 

 

Figure 3. HFSCs in each stage of the hair cycle
 

Some of these mediators are positive regulator, such as; wnt proteins 
(56) and growth factors such as fibroblast growth factor(FGF), 
platelet derived growth factor (PDGF) (47) and so on, that promote 
hair growth. Likewise, other mediators are negative regulators, such 
as; BMP which prevents hair growth(57). Hair growth cycle can be 
deregulated by paracrine factors from the follicle itself and/or from 
the surrounding dermal tissue, or by endocrine factors
loss (37, 40). 
 
Hair follicles associated immune cells 
 
What is the importance of Immune responses, immune cells and their 
cytokines in hair cycle? It is known thatcytokines and hair follicles 
associated immune cells delete pathogens, prevent from immune 
dysregulation and maintain tissue homeostasis(4)
that T cells and macrophages(MQs) are the major effectors in hair 
follicles regeneration (58, 59). The immune cells, including 
macrophages, mast cells, and γδT cells and regulatory T (Treg) cells 
regulate the activity of HFSCs(36, 59). see more figure 1.
mast cells are involved in the transition telogen to 
anagen to catagen (60). Histamine and serotonin secreted by mast 
cells promote the proliferation of keratinocytes and also, mast cells 
contribute hair loss in AGA (61). When skin is injured e.g. by hair 
plucking, HFs release chemokines such as CCL2 that recruit MQs 
(62). Then MQs are activated by the apoptosis signal
kinase 1(ASK1). Activated MQs release cytokines such as tumor 
necrosis factor-α(TNF-α). This cytokine activates HFSCs by inducing 
AKT-dependent β-catenin accumulation (63). After that, HFSCs 
proliferate and differentiate to promote premature anagen entry 
MQs are divided into two main cell populations; M1 and M2 
phenotypes (65). M2 phenotype is responsible for 
then these cellsstimulate hair regeneration via paracrine secretion of 
Insulin growth factor(IGF) and hepatocyte growth factor(HGF) 
With the production of new hair shaft, injured skin is repaired 
Regulatory T cells(Treg cells) are in close contact with H
can increase the proliferation and differentiation of HFSCs following 
hair plucking(59). Treg cells express high level of Notch ligand 
family member called Jagged 1 (Jag 1) which facilitate HFSCs 
function and then promote HF regeneration and subsequent hair re
growth (59, 67). γδT cells are seen in outer root sheath of HFs. 
Activated γδT cells function include; 1) stimulation of epidermal stem 
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What is the importance of Immune responses, immune cells and their 
cytokines and hair follicles 

cells delete pathogens, prevent from immune 
).It has been shown 

that T cells and macrophages(MQs) are the major effectors in hair 
The immune cells, including 

macrophages, mast cells, and γδT cells and regulatory T (Treg) cells 
. see more figure 1.In mice, 

mast cells are involved in the transition telogen to anagen as well as 
ne and serotonin secreted by mast 

cells promote the proliferation of keratinocytes and also, mast cells 
When skin is injured e.g. by hair 

plucking, HFs release chemokines such as CCL2 that recruit MQs 
. Then MQs are activated by the apoptosis signal-regulating 

kinase 1(ASK1). Activated MQs release cytokines such as tumor 
α). This cytokine activates HFSCs by inducing 

. After that, HFSCs 
proliferate and differentiate to promote premature anagen entry (64). 
MQs are divided into two main cell populations; M1 and M2 

ype is responsible for tissue regeneration, 
stimulate hair regeneration via paracrine secretion of 

Insulin growth factor(IGF) and hepatocyte growth factor(HGF) (66). 
With the production of new hair shaft, injured skin is repaired (32). 
Regulatory T cells(Treg cells) are in close contact with HFSCs and 
can increase the proliferation and differentiation of HFSCs following 

express high level of Notch ligand 
(Jag 1) which facilitate HFSCs 

function and then promote HF regeneration and subsequent hair re-
are seen in outer root sheath of HFs. 

stimulation of epidermal stem 

cell proliferation to accelerate wound healing and 2)HFSC activation 
for hair regrowth (68).  
 
Hair follicle stem cells: The main hair stem cells are: hair follicle 
stem cells (HFSCs) in bluge and dermal papilla cells
dermal papilla region. But the other stem cells within HFs are 
alsoinvolved in tissue homeostasis and damage repair, which include; 
keratinocyte progenitors, melanocyte progenitors, nestin
stem cells, skin-derived precursor cells
papilla region and stem cells in sebaceous and sweat gland 
71). As mentioned before, HFSCs are multipotent and capable to 
regenerate HFs and consequently hair growth through reaction with 
DPCs (1). HFSCs originate from neuroectoderm and
shown to be capable of differentiating into nerve cells, glia cells, 
smoot muscle cells, skeletal muscle cells, cardiac cells and 
melanocytes (72). The term ‘HFSCs’ was first used in 1990s, which 
is first identified in the bulge epithelium as label
These cells are often silent. But, 
cells are activated by receiving signals from activators such as 
secretory factors of DPCs and then the anagen phase is started 
At present, CK15 is the best marker to identify human HFSCs 
Integrin β-1, CD34, CK19, CD200, pleckstrin homology
family 1(PHLDA1) also called T cell death associated gene 51 
(TDAG51) and finally nuclear factor of T cell 1 (NFATC1) are other 
specific markers. PHLDA1 can prevent apoptosis 
other markers such as: CD71, CD146, connexin 43, SCA
and P75NTR (75). The main function of HFSCs is to maintance 
homeostasis of HFs, skin wound healing, renewal and reestablishment 
of hair follicles (44, 76). The origin of DPCs may be dermal 
fibroblasts. In fact, DPCs are formed by epithelial 
interaction in the embryonic stage. As mentioned above, after birth, 
DPCs are located in dermal papilla region of each hair follicle. 
are the main responsible for hair formation. These cells proliferate 
and differentiate and then develop hair shaft, inner root sheath and 
outer root sheath, from inside to outside(see more Figure1). In mouse, 
the most important markers of DPCs are 
box 2 (SOX2) and CD133 (77). In vitro, DPCs can differentiate to 
several types of cells such as; chondrocyte, blood cells, smooth 
muscle cells, fibroblast, osteoblast, adipocyte and neuron or glia 
Among dermal papilla cells, there are other stem cells called skin
derived progenitors(SKPs) that are capable to differentiating into the 
cells mentioned above (79). DPCs 
formation, growth, and cycling (80
 
HFSC signaling pathways: Local microenvironment or niche of 
HFSCs is a complex signaling netw
cytokines, growth factors and other stimulators around them that 
regulate HFSCs activities. Control of HFSCs either physiological or 
pathological states is done by a variety of signaling pathways.
regulation of survival and death signaling pathways plays a role in the 
quiescence, activation, differentiation and metabolism of HFSCs 
which is essential for skin homeostasis, hair regeneration and hair 
growth (44, 81, 82).  
 
Five known signaling pathways which control HFSCs functions 
83) are; 
 
1. Wnt/β-catenin signaling pathway
2. Sonic hedgehog (Shh) signaling pathway
3. NOTCH signaling pathway 
4. Bone morphogenetic protein (BMP) signaling pathway
5. Apoptotic pathway 
 
The first four pathways involve in HFSCs survival and the last 
pathway leads to HFSCs death. 
 
Molecular mechanism of Wnt/β-
 
Wnt family proteins are secretory f
tissues. So far, 19 members of this family protein have been identified 
in human and mice which are separated from each other by 
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numbering such as; wnt1, wnt2. Each of the subgroups are named 
with small letters e.g. wnt1a or wnt1b and so on. Wnt comes from 
Wingless-related integration site (25). For the first time, int oncogenic 
protein called int1was found in mouse breast cancer. But later, a 
protein similar to int1 in drosophila was identified.
of this protein was changed to int/wingless and then to wnt
Wnt proteins, are a family of highly conserved proteins that regulate 
multiple functions (84) including; cell-cell interaction in lung 
development, homeostasis, regeneration following injury
development and adult tissue homeostasis (87), self
cells or stem cells control (88), tissue regeneration after injury 
hematopoiesis (90), cellular proliferation and differentiation 
motility (92). Of course, it has been said that wnt proteins act to 
maintain the undifferentiated state of stem cells, while other growth 
factors instruct the cells to proliferate. These other factors include 
FGF and EGF, signaling through tyrosine kinase pathways
diverse roles of wnt signaling has been revealedin HFs development 
(44). In physiological state, HFSCs in bulge are silent. But, in telogen 
phase, extracellular proteins wnt increase and bind to their receptor 
named Frizzled onthe surface of HFSCs. lipoprotein receptorrelated
protein or Lrp5/6 receptors are co-receptors for wnt proteins (Look at 
Figure 4). By binding wnt to Frizzled and Lrp, cytoplasmic protein 
Dv1 (Disheveled) attaches to Frizzled and Lrp cytoplasmic tail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a result, the inhibitory complex of β-catenin is suppressed. The 
component of this inhibitory complex are; Axin, APC, Dv1 and 
GSCK3. By disconnecting Dv1 from complex andconnecting it to 
wnt receptor, the inhibitory effect of this complex has been remov
and then β-catenin is released. Subsequently, the cytoplasmic 
concentration ofβ-catenin increases. Then, β-catenin is translocated to 
the nucleus and binds to transcription factors of TCF/LEF family to 
promote the expression of target genes, such as Axi
Lgr5. By expression genes, HFSCs activated and the telogen phase 
turns into anagen (25, 88). Inanagen phase, β-catenin is overregulated 
in HFSCs. But, in catagen and telogen phases, β
downregulated. In these stages, repression of wnt signaling is 
triggered (Figure 3.). In the absence of a Wnt signal, Wnt inhibitors 
(e.g., sFRP1, Dkk1, Dkk3 or Wif) bind to Frizzled/Lrp. Then Dv1 
protein joins the inhibitory complex and a multiprotein complex is 
formed with APC, Axin, GSK3 and Dv1, which can target and 
phosphorylate β-catenin. After that, β-cateninis ubiquitinated and 

 

Figure 4. wnt/β-catenin signaling pathway
 

a. In the Wnt/β-catenin signaling ON (activation), By binding wnt to 
Frizzled and Lrp, cytoplasmic protein Dv1 attaches to Frizzled and Lrp 
cytoplasmic tail. Then,the inhibitory complex of β
Axin, APC,and GSCK3, by disconnecting from Dv1, releases 
Then, β-catenin is translocated to the nucleus and binds to 
factors of TCF/LEF family to promote the expression of target genes. 

b. In the Wnt/β-catenin signaling OFF (repression), Dv1 protein 
inhibitory complex and a multiprotein complex is formed with APC, 
Axin, GSK3 and Dv1, which can target and phosphorylate β
After that, β-cateninis ubiquitinated and degraded by proteosomes. 
T-shaped lines indicate inhibitory interactions involved in this pathway, 
and the solid arrows indicate activating interactions.
Lrp5/6; LDL receptor-related proteins 5 and 6, Dv1; 
APC; tumor suppressor Adenomatous Polyposis Coli, GSK3β: 
glycogen synthesis kinase 3β, TCF/LEF; T cell factor/Lymphoid 
Enhancer Factor. 
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Of course, it has been said that wnt proteins act to 
differentiated state of stem cells, while other growth 

factors instruct the cells to proliferate. These other factors include 
FGF and EGF, signaling through tyrosine kinase pathways (88). The 

revealedin HFs development 
silent. But, in telogen 

phase, extracellular proteins wnt increase and bind to their receptor 
lipoprotein receptorrelated 

receptors for wnt proteins (Look at 
wnt to Frizzled and Lrp, cytoplasmic protein 

attaches to Frizzled and Lrp cytoplasmic tail.  

catenin is suppressed. The 
component of this inhibitory complex are; Axin, APC, Dv1 and 
GSCK3. By disconnecting Dv1 from complex andconnecting it to 
wnt receptor, the inhibitory effect of this complex has been removed 

catenin is released. Subsequently, the cytoplasmic 
catenin is translocated to 

transcription factors of TCF/LEF family to 
promote the expression of target genes, such as Axin2, LEF1and 

By expression genes, HFSCs activated and the telogen phase 
catenin is overregulated 

in HFSCs. But, in catagen and telogen phases, β-catenin is 
downregulated. In these stages, repression of wnt signaling is 

In the absence of a Wnt signal, Wnt inhibitors 
d to Frizzled/Lrp. Then Dv1 

a multiprotein complex is 
formed with APC, Axin, GSK3 and Dv1, which can target and 

is ubiquitinated and 

degraded by proteosomes. By reducing
expression are downregulated. HFSCs
regeneration and regrowth is prevented. Recent events are seen 
physiologically in catagen and telogen. But, if the breakdown of β
catenin is not restored, hair lossbecom
Wnt7 andwnt10b functions as a major activator, play a key role in 
wnt/β-catenin signaling in HFSCs. Hence, they involve in hair 
growth. In addition, Wnt10b is an activator that regulates HFSC 
expression during the telogen-anagen phase transition
more Figure 4. 
 
Molecular mechanism of Shh signaling pathway
pathway plays crucial role in tissue development, homeostasis and 
regeneration. It regulates the morphogenesis of various organs during 
embryogenesis (97, 98). Shh signaling in 
catenin pathway helpsquiescent HFSCs to proliferate and regulate 
dermal factors topromote HFSCs activation 
factorsareextracellular protein in multiple tissues, including HF tissue 
which are bound to their receptors called Patched(PTCH),during the 
transition from telogen to anagen. As a result, the 
PTCH on Smoothened (Smo) is removed. Smo is a G protein
receptor (GPCR)-like protein. Subsequently, Smo is translocated to 
the cell membrane of HFSCs and Gli proteins areseparated from 
suppressor of fused homologue (sufu) proteins
are translocatedinto the nucleus, leading to the transcription of target 
genes e.g. Ptch and Gli1. Quiescent HFSCs are activated and initiate 
to proliferate (99, 100). See more Figure 5.
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

The T-shaped lines indicate inhibitory interactions involved in this 
pathway, and the solid arrows indicate activating interactions. 
Abbreviations; Shh: Sonic hedgehog, Smo: Smoothened, PTCH: 
Patched, Sufu: suppressor of fused homologue proteins
associated oncogene. 
 
Molecular mechanism of Notch signaling pathway: 
receptor family is a type I single transmembrane receptor protein 
family with four members in mammalian including; in mice and 
humans (101). These surface receptors play a key role in the 
proliferation and differentiation of various skin cellsspecial during the 
development of mammalian embryos
demonstrated a significant relationship between Notch signaling and 
hair health and hair-related diseases
vital role in the activation, proliferation, differentiation of HFSCs and 
metabolite generation (44).The Notch family has four receptors 
(Notch 1,2,3,4) with five ligands such as:
 
Delta like-1,3,4 (Dll 1,3,4) , Jagged 1 and Jagged 2
 

 

Figure 5. Shh signaling pathway
 
a. with Shh-PTCH binding, the 

Smoothened(Smo) is removed. Gli proteins are separated from sufu 
and then Gli proteins are translocated into the nucleus, leading to 
target gene expression. 

b. in the repression state, Gli protein are inhibited by sufu andremain in 
the cytoplasm. 

 

 
signaling pathway 

catenin signaling ON (activation), By binding wnt to 
Frizzled and Lrp, cytoplasmic protein Dv1 attaches to Frizzled and Lrp 
cytoplasmic tail. Then,the inhibitory complex of β-catenin containg 
Axin, APC,and GSCK3, by disconnecting from Dv1, releases β-catenin. 

catenin is translocated to the nucleus and binds to transcription 
factors of TCF/LEF family to promote the expression of target genes.  

Dv1 protein joins the 
n complex is formed with APC, 

Axin, GSK3 and Dv1, which can target and phosphorylate β-catenin. 
is ubiquitinated and degraded by proteosomes. The 

shaped lines indicate inhibitory interactions involved in this pathway, 
rrows indicate activating interactions. Abbreviations: 

related proteins 5 and 6, Dv1; Disheveled 1, 
tumor suppressor Adenomatous Polyposis Coli, GSK3β: 

TCF/LEF; T cell factor/Lymphoid 
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By reducing β-catenin, TCF/LEF genes 
expression are downregulated. HFSCs are inactivated and hair 
regeneration and regrowth is prevented. Recent events are seen 
physiologically in catagen and telogen. But, if the breakdown of β-
catenin is not restored, hair lossbecomes permanent (25, 93, 94). 

wnt10b functions as a major activator, play a key role in 
catenin signaling in HFSCs. Hence, they involve in hair 

growth. In addition, Wnt10b is an activator that regulates HFSC 
anagen phase transition(95, 96). See 

Shh signaling pathway: Shh signaling 
pathway plays crucial role in tissue development, homeostasis and 
regeneration. It regulates the morphogenesis of various organs during 

. Shh signaling in like manner to wnt/β-
catenin pathway helpsquiescent HFSCs to proliferate and regulate 
dermal factors topromote HFSCs activation (38). Shh similar to wnt 
factorsareextracellular protein in multiple tissues, including HF tissue 
which are bound to their receptors called Patched(PTCH),during the 
transition from telogen to anagen. As a result, the inhibitory effect of 

(Smo) is removed. Smo is a G protein-coupled 
like protein. Subsequently, Smo is translocated to 

the cell membrane of HFSCs and Gli proteins areseparated from 
(sufu) proteins and then Gli proteins 

are translocatedinto the nucleus, leading to the transcription of target 
genes e.g. Ptch and Gli1. Quiescent HFSCs are activated and initiate 

. See more Figure 5. 
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After the cell-cell interaction, Notch receptors bind to their ligands on 
the adjacent cell. As a result, a conformational change occurs in
Notch receptor that expose the recognition site for cleavage b
ADAM and γ-secretase, leading to the release of the active Notch 
intracellular domain (NICD). Subsequently, NICD is translocated to 
the nucleus, leading to the formation of a complex, the DNA
protein CSL (CBF1/RBPjκ/Su(H)/lag-1)/additional coacti
A)/mastermind (MAM), which induces the transcription of target 
genes (44, 101, 106). See more Figure 6. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The T-shaped lines indicate inhibitory interactions involved in this 
pathway, and the solid arrows indicate activating interactions. 
Abbreviations; NICD: Notch intracellular domain, CSL: CBF1/
RBPjκ/Su(H)/lag-1, Co-A: co-activator, Co-R: 
mastermind.  
 

Molecular mechanism of TGF-β/BMP signaling pathway
1970, a physician named Marshall Urist utilized the term bone 
morphogenetic protein (BMP) after demonstrating that these pro
play a crucial role in osteogenesis(107). Yet, more 
have been identified (108). BMPs are members of TGF
superfamily. The TGF-β superfamily plays an important role in the 
embryogenesis, homeostasis, bone and cartilage formation,
dysfunction of the TGF-β signaling pathways are associated with 
many human diseases, such as fibrosis, cancer and immune disorders 
(107). Among BMPs, only BMP2 and BMP4 are associated with hair 
follicles (109). BMPs promote self-regulated proliferation and 
differentiation of HFSCs (110).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Notch signaling pathway
 

a. After binding Notch receptors to their ligands on the adjacent cell, 
Notch receptors are cleaved and NICDomains are released and then 
translocateto the nucleusfor target expression.  

b. In the repression state, Notch receptors remain on the cell surface.

 

Figure 7. BMP signaling pathway
 

a. With binding BMP to its receptors, R-smad is phosphorylated and binds 
to Co-smad. Then, both as a transcription factors with coactivators 
A) are translocated to the nucleusfor target genes expression.

b. The association of R-smad/Co-smad complex with coreptors (Co
inhibits of the expression of the target genes. In this case, Noggin 
prevents BMP from binding to its receptors. 
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cell interaction, Notch receptors bind to their ligands on 
the adjacent cell. As a result, a conformational change occurs in 

that expose the recognition site for cleavage by 
secretase, leading to the release of the active Notch 

(NICD). Subsequently, NICD is translocated to 
the nucleus, leading to the formation of a complex, the DNA-binding 

1)/additional coactivators (Co-
A)/mastermind (MAM), which induces the transcription of target 

shaped lines indicate inhibitory interactions involved in this 
pathway, and the solid arrows indicate activating interactions. 
Abbreviations; NICD: Notch intracellular domain, CSL: CBF1/ 

 co-receptor, MAM: 

β/BMP signaling pathway: In 
1970, a physician named Marshall Urist utilized the term bone 
morphogenetic protein (BMP) after demonstrating that these proteins 

. Yet, more than 20 BMPs 
are members of TGF-β 

β superfamily plays an important role in the 
embryogenesis, homeostasis, bone and cartilage formation, and 

β signaling pathways are associated with 
many human diseases, such as fibrosis, cancer and immune disorders 

Among BMPs, only BMP2 and BMP4 are associated with hair 
regulated proliferation and 

The expression of BMPs are opposite to wnt/β
phases of the hair growth cycle. BMPs are highly expressed in 
catagen or regressive phase but, wnt/β
proliferative phase of the hair growth cycle. It indicates 
Wnt/β-catenin signals cooperatively regulate the balance between 
HFSCs and epidermal regeneration
transmembrane heterodimeric receptor complex formed by BMPR I 
and BMPR II (112). After being released from its inhibitor called 
Noggin, BMP binds to its membrane receptor complex and causes 
cytoplasmic protein R-smad to be phosphorylated. Then 
phosphorylated R-smad connects to transcription factor Co
smad/Co-smad complex is able to cross the nuclear membrane, bind 
to the promotor and leading to the expression of target genes. As a 
result, HFSCs will be turned off.  See more Figure
lines indicate inhibitory interactions involved in this pathway, and the 
solid arrows indicate activating interactions. Abbreviations; BMPR 
I/II: Bone morphogenetic protein receptor I/II, smad:
mothers against decapentaplegic, 
Co-A: co-activators, Co-R: co-receptors.
 

Molecular mechanism of Apoptotic signaling pathway
lymphoma-2(BCL-2) family is divided into twomain groups based on 
their function (1) anti-apoptotic proteins (BCL
MCL-1, BFL-1/A1), and (2) pro-apoptotic proteins (BAD, BID, BIK, 
BIM, BMF, HRK, NOXA, PUMA, etc.). pro
as; BAX and BAK are also per-formers 
are Ced-9 homologues. They control cell death primarily by 
regulating mitochondrial outer membrane permeabilit
leads to the release of intermembrane proteins, the 
caspase activation and apoptosis
regulate programmed cell death. Among them, Bcl
inhibit cell death. In contrast, there are members (Bax, Bak, Bid, and 
Bad) that promote cell death (
apoptotic and anti-apoptotic members of Bcl
maintaining homeostasis in HFSCs of the bulge. In catagen, inner 
root sheath, matrix and outer root sheath keratinocytes undergo 
apoptosis with the activation of pro
HFSCs survive by anti-apoptotic proteins and continue to self
and replace differentiated or/and destroyed cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apoptosis or cell death programmed mediates in two known 
pathways: intrinsic and extrinsic pathway. Intrinsic pathwayactivated 
by intercellular stresses such as; radical oxidative species
DNA damage, while extrinsic pathway initiated by Fas
interaction (116). In both pathways, with the 
and the formation of caspase3/7 complex, DNA damage and 
apoptosis occur. See more Figure 8.
5p inhibitor can suppress the proliferation and trigger the apoptosis of 
HFSCs, while miR-149-5p can upregula
downregulate caspase 3, as well as induce anti

Notch signaling pathway 

After binding Notch receptors to their ligands on the adjacent cell, 
NICDomains are released and then 

In the repression state, Notch receptors remain on the cell surface. 

 
BMP signaling pathway 

smad is phosphorylated and binds 
transcription factors with coactivators (Co-

A) are translocated to the nucleusfor target genes expression. 
smad complex with coreptors (Co-R) 

inhibits of the expression of the target genes. In this case, Noggin 

 

Figure 8. Apoptosis signaling pathway

a. In intrinsic pathway with the release of cytochrome C, caspase 9 is 
finally activated. Then, with the activation of caspa
death occurs. 

b. In extrinsic pathway, with death ligand
activated. After that, with the activation of caspases 3 and 7, cell death 
also occurs. 
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opposite to wnt/β-catenin in different 
phases of the hair growth cycle. BMPs are highly expressed in 
catagen or regressive phase but, wnt/β-catenin proteins in anagen or 
proliferative phase of the hair growth cycle. It indicates that BMP and 

signals cooperatively regulate the balance between 
HFSCs and epidermal regeneration (111). BMPs bind to 
transmembrane heterodimeric receptor complex formed by BMPR I 

After being released from its inhibitor called 
inds to its membrane receptor complex and causes 

smad to be phosphorylated. Then 
smad connects to transcription factor Co-smad. R-

smad complex is able to cross the nuclear membrane, bind 
ading to the expression of target genes. As a 

result, HFSCs will be turned off.  See more Figure 7. The T-shaped 
lines indicate inhibitory interactions involved in this pathway, and the 
solid arrows indicate activating interactions. Abbreviations; BMPR 

I: Bone morphogenetic protein receptor I/II, smad: suppressor of 
 R-smad: receptor-activated smad, 

receptors. 

Apoptotic signaling pathway: B-cell 
is divided into twomain groups based on 

apoptotic proteins (BCL-2, BCL-XL, BCL-W, 
apoptotic proteins (BAD, BID, BIK, 

BIM, BMF, HRK, NOXA, PUMA, etc.). pro-apoptotic proteins such 
formers (113). Bcl-2 family members 

9 homologues. They control cell death primarily by 
regulating mitochondrial outer membrane permeability(MOMP) that 
leads to the release of intermembrane proteins, the subsequent 
caspase activation and apoptosis (113). BCL-2family proteins 

. Among them, Bcl-2 and Bcl-xL 
inhibit cell death. In contrast, there are members (Bax, Bak, Bid, and 

(114). The balance between pro-
apoptotic members of Bcl-2 family leads to 

maintaining homeostasis in HFSCs of the bulge. In catagen, inner 
and outer root sheath keratinocytes undergo 

apoptosis with the activation of pro-apoptotic proteins, while bulge 
apoptotic proteins and continue to self-renew 

and replace differentiated or/and destroyed cells (115).  

Apoptosis or cell death programmed mediates in two known 
pathways: intrinsic and extrinsic pathway. Intrinsic pathwayactivated 
by intercellular stresses such as; radical oxidative species (ROS) and 
DNA damage, while extrinsic pathway initiated by Fas-Fas ligand 

In both pathways, with the activation of caspases 
and the formation of caspase3/7 complex, DNA damage and 
apoptosis occur. See more Figure 8. A study revealed that a miR-149-
5p inhibitor can suppress the proliferation and trigger the apoptosis of 

5p can upregulate the expression of Bcl-2 and 
downregulate caspase 3, as well as induce anti-apoptotic responses in 

 
Apoptosis signaling pathway 

 
 

with the release of cytochrome C, caspase 9 is 
finally activated. Then, with the activation of caspases 3 and 7, cell 

with death ligand-receptor binding, caspase 8 is 
activated. After that, with the activation of caspases 3 and 7, cell death 
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HFSCs (116). Hence, it is suggested that microRNAs are involved in 
the regulation of apoptosis in HFSCs and contribute the survival of 
these cells. See more Figure 8. The solid arrows indicate activating 
interactions. PI3K-Akt Pathway is an intracellular signal transduction 
pathway that promotes metabolism, proliferation, cell survival, 
growth and angiogenesis in response to extracellular signals (117). 
When HFSCs injury, by binding the ligand to the receptor, PI3K is 
activated which activates AKT. The recent downstream transcription 
factor is a serine/threonine kinase that is also known as protein kinase 
B. Then, AKT phosphorylates FOXO, GSK3 and mTOR. Then, 
FOXO and GSK3 are inhibited but, mTOR is activated. As a result, 
apoptosis and glycogen synthesis are inhibited, but by activating the 
processes of cell growth and proliferation, hair follicles are 
regenerated (118, 119). See more Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Wnt pathway plays an important role in hair growth and regulates 
HFSC expression during the telogen-anagen phase transition, Shh 
pathway induces quiescent HFSCs to be activated and initiate to 
proliferate, Notch signaling plays a vital role in the activation, 
proliferation, differentiation of HFSCs and metabolite generation, 
then determines the fate of HFSCs and BMP is involved in HFSCs 
differentiation. Many evidences propose that more than one of these 
pathways is active in HFSCs, either at the same time or in different 
periods (112, 120). Then, there is a crosstalk between signaling 
pathways, thus, the interactions between them are complex and the 
balance between signaling pathways is vital to the development of 
HFSCs. 
 
Hair loss regeneration: from dream to reality: AGA is a diffuse 
and non-scaring alopecia, induced by genetic and hormonal factors. It 
is characterized by the progressive miniaturization of hairfollicles, 
with the transformation of terminal hair into villus hair (121). A 
number of genes determine the predisposition for androgenetic 
alopecia in a polygenic fashion Multiple genes associated with the 
progression of AGA, including IGF-1,DKK-1, and TGF β1(122). It is 
believed that the action mechanism of PRP in hair growth may be 
include that Activated PRP induce the proliferation of dermal papilla 
(DP) cells by activating extracellular signal-related kinase (ERK) and 
protein kinase B (Akt, an anti-apoptotic signaling molecule) signaling 
(123-125). EGF and PDGF in PRP upregulate the ERK pathway, 

leading to the increased transcription of genes involved in cellular 
proliferation and differentiation. Thus, activated PRP affect hair 
cycling by prolonging anagen phase and preventing apoptosis and the 
catagen phase. 
 
Hair loss classification: A reduction in the number of hair strands , 
hair thinning or both is called hair loss (126). see more table 1. It can 
be classified as: scarring and non-scaring are seen rare (127-129)and 
more respectively. Non-scarring alopecia includes: Alopecia Areata, 
Anagen effluvium, Androgenetic alopecia, Telogen effluvium, Tinea 
capitis, Trichorrhexis nodosa Trichotillomania, Patchy hair loss and 
diffuse hair loss alone or associate with patchy type, see more Table 
2. 
 

Table 1. Alopecia classification in terms of etiology 
 

Hormonal type Non-hormonal  type 
Androgenetic Alopecia - senescent alopecia 
 - circatricial alopecia 

- alopecia areata 
- traction alopecia 

 
Androgenetic Alopecia pathogenesis: The factors involve in HFs 
disorder include hormonal and non-hormonal. Androgens are main 
players in hair growth or loss. Non-hormonal factors are medication 
(138), microbial inflammation (139), trauma(140), malnutrition(16), 
aging(141)and vitamin deficiency (142). Hormonal hair loss is 
occurred by androgens, Thyroid hormones and glucocorticoids. All 
three type hormones have several functional roles on healthy human 
skin such as; hair growth, proliferation and differentiation of 
sebaceous glands and wound healing(143, 144). But, in AGA, 
dihydrotestosterone (DHT) , as a master androgen, is involved in the 
reduction of anagen phase, increasing of hair follicles number in 
catagen and telogen phases and so delaying the telogen-to-anagen 
transition (143). Androgenetic alopecia is morphologically 
characterized by transformation of thick and pigmented terminal scalp 
hair into short (122). Androgens are an important regulator for hair 
growth with paradoxical effects on HFs in different body regions. 
Androgens can stimulate the transformation of small villus HFs into 
large terminal HFs after puberty, such as beard, pubic hair and 
axillary hair (145, 146). On the contrary, in the scalp of individuals 
with androgenetic alopecia, androgens inhibit hair growth and lead to 
hair loss (147). Serum high level of androgens in females can lead to 
hirsutism with excessive male pattern hair growth(148). These 
opposing effects of androgens on human hair growth have long been a 
mystery (149, 150). Androgens act through the intracellular androgen 
receptor. In HFs, androgen receptors are mainly expressed by DP 
(151, 152). In contrast, keratinocytes do not express androgen 
receptors or show androgen receptor-dependent signaling activation, 
hence it has been suggested that keratinocytes may not be the primary 
responding cells in HFs (153, 154). Dihydrotestosterone (DHT) is 
produced from testosterone by 5-α-reductase. type I and II are two 
forms of this enzyme. Type I is primarily produced in skin and liver 
and then is transferred to the prostate by blood circulation. Type II is 
mainly made in the prostate. Both of these enzymes convert 
testosterone to dihydrotestosterone. Then DHT is attached to 
androgenetic receptors (ARs) on cells including dermal papilla cells 
of hair follicles. Subsequently, these cells are stimulated and trigger 
to produce Transforming growth factor-1(TGF-1). TGF-1 is a catagen 
inducer in hair cycle. Therefore, TGF-1, as a negative regulator, 
causes hair loss by inducing apoptosis (155-158). In androgenetic 
alopecia, all of these events, just happen in HFs of scalp not in other 
regions of body. Can decreased DHT production or inhibition of 5-α-
reductase activity or preventing from DHT attachment to androgen 
receptors on DPCs and or inhibition of TGF-1 production in scalp 
HFs be suitable strategies for AGA treatments? 
 
Dermal papilla cells regulate hair growth. The same cells are attacked 
by 5-α-reductase. 
 
DPcells in the balding area exhibit higher activity of type II 5-alpha-
reductase, an enzyme that are normally highly expressed in the 

 
 

Figure 9. PI3K/AKT signaling pathway 
 

When HFSCs injury, by binding the ligand to the receptor, PI3K is 
activated which activates AKT through PDK1. AKT phosphorylates 
FOXO, GSK3 and mTOR. Then, FOXO and GSK3 are inhibited but, 
mTOR is activated. By activating the processes of cell growth and 
proliferation, hair follicles are regenerated. The T-shaped lines indicate 
inhibitory interactions involved in this pathway, and the solid arrows 
indicate activating interactions. Abbreviations; Akt: Ak strain 
transforming, mTOR: mammalian target of rapamycin, GFs: growth 
factors, GSK3: glycogen synthesis kinase 3, FOXO: Fork-head box O, 
PTEN: Phosphatase and TENs in homolog deleted on chromosome 10. 
PDK1:3-Phosphoinositide-dependent kinase 1, PI3K: Phosphoinositide 3-
Kinase, RTK: Receptor tyrosine kinase, HFs: Hair Follicles.  
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prostate. This enzyme converts testosterone into dihydrotestosterone 
via 5α-reductase (159). Local sustained dihydrotestosterone 
stimulation to DP compromises its functions, leading to deteriorating 
hair growth, shortened anagen and prolonged telogen (150). 
 
Hair loss treatments: Quality of life may decrease in patients with 
AGA and they may be depressed (160). Hence, it needs to be treated. 
At present, treatments include drug and non-drug therapy. The current 
pharmacological treatment for AGA includes androgen metabolism 
modulators, such as: 
 

1.  Finasteride, dutasteride (oral) and minoxidil (topical) as a 5-
alpha reductase inhibitor  

2.  Flutamide as an antiandrogen agent(1) 
3.  Spironolactone for female androgenetic alopecia 

 
Othertreatment strategiesare nutrient therapy, natural products, low-
level light therapy and hair transplantation surgery. The use ofWnt 
activators and SFRP1 antagonism is the latest therapeutic strategy to 
treat hair loss, especially in AGA (18). 
 
The current research methods for AGA treatment are all type of cell 
transplant including: 
 

 1.  Dermal papilla cells (with or without epidermal components) 
 2.  Embryonic dermal cells 
 3.  Hair follicle stem cells in bulge 

 
In addition, platelet- rich plasma(PRP) and nano-molecoles are also 
technics which have been used for AGA treatment in trial or clinical. 
Reactivating of quiescent stem cells in bulge is the last research field 
for AGA treatment.  
 
Of course, immunotherapy is used to treat some types of hair loss 
including (161); 
 

 1.  Alopecia Areata 
 2.  Alopecia Totalis 
 3.  Alopecia Universalis 

 
In recent treatment model, three chemicals are used which are: 
Diphencyprone (DPCP), Dinitrochlorobenzene (DNCB) and/or 
Squaric acid dibutyl ester (SADBE). 
 
Drug therapy for AGA: Finasteride (1 mg/day), dutasteride (0.5 
mg/day), both of them are orally and topical minoxidil as a 5-alpha 
reductase inhibitors have been approved by Food and Drug 
Administration (FDA) of USA. Finasteride inhibits Type II 5α-
reductase. Dutasteride (as a dual inhibitor) inhibits both Type I and II 
5α-reductase (159). But, due to side effects and short shelf life of 
these drugs, researchers have been attempted to producemore 
effective drugs. Recently, Chinese made a capsule consist of 2,3,5,4’-
tetrahydroxystilbene, 2-o-β-D-glucoside, Chlorogenic acid, Emodin, 
Ferulic acid, Isoimperatorin, Paeoniflorin. These compounds are 
prepared from plants (122). 
 
PRP mechanism of action in the treatment of AGA: Platelets in PRP 
become activated when injected into the scalp and release multiple 
growth factors, which promote hair growth. These growth factors play 
a role in fibroblast activation, collagen synthesis, stimulation of the 
extracellularmatrix, and overexpression of endogenous growth factors 
(123). 
 
Growth factors that are released by activated platelets in PRP 
including (124); 
 

-  Platelet-derived growth factor (PDGF), after binding to its 
receptor in the dermal papilla cells, leads to the activation of 
hair germ(47). 

-  Transforming growth factor beta (TGF-β), as a BMP 
inhibitor, it activates HFSCs and enters the anagen phase 
(162). 

-  vascular endothelial growth factor (VEGF), increase in 
anagen phase and in outer root sheath keratinocytes of hair 
follicles strongly induced perifollicular vascularization, 
resulting in accelerated hair regrowth after hair loss and in 
increased size of hair follicles and hair shafts (163). 

-  epidermal growth factor (EGF), is essential for the initiation 
of hair growth and prevents entry into the catagen phase(164). 

-  insulin like growth factor-1(IGF-1),induce and prolong the 
anagen phase of the hair growth cycle (165). 

 
It is suggestedthat mentioned growth factors promote cell 
proliferation, differentiation, angiogenesis, chemotaxis and 
neovascularization that is essential for hair regrowth (166). Although, 
PRP mechanism of action is not still completely cleared, but it is 
reported that activated platelet induce to proliferate dermal papilla 
calls. It is mediated by extracellular signal-related kinase (ERK) 
pathway and protein kinase B signaling(124). Platelet growth factors 
such as FGF and PDGF increase ERK signaling activity and promote 
to the upregulated transcription of genes involved in DPCs 
proliferation and differentiation(125). Hence, with proliferating and 
differentiating of DPCs take parts in hair regrowth. It has been 
reported that PRP can increase the number and thickness of hair 
(167). Taken together, PRP effects on hair growth cycle include hair 
follicles vascularization, prolong the anagen phase, inhibition of 
apoptosis in the catagen phase and acceleration of telogen- anagen 
transition (167, 168). Despite these reports, there is still no complete 
and definitive treatment with PRP for all patients having AGA.  
 
Nutrient therapy and natural products for AGA treatment: The 
factors involved in hair follicle disorders include; poor nutrition, 
medication, vitamin deficiency, aging, hormone changes and 
inflammation (143). At present, approved drugs at clinical and natural 
products in traditional stages are used for treatment or at least for 
reducing the risk of AGA. Natural products consist of carotenoids, 
polyphenol (169-171). Polyphenols include flavonoids, procyanidins, 
phenolic acid and stilbenes and also flavonoids contain visnadin, 
hesperidin and baicalin which have been studied for hair regrowth in 
AGA(172)and these compounds are thought to reduce the risk of 
AGA(173). Natural products are found in various fruits, vegetables 
and nuts. A great deal trials are done till these products have been 
alternated drug approved by FDA, precisely because of their side 
effects or long term use. Serenoa repens; an extract from the berries 
of the saw palmetto palm tree, Panax ginseng C.A. Mey. ;a plant in 
traditional Chinese medicine, Malus pumila Mill. cultivar Annurca 
(Annurca apple) a native plant in south ofItaly, Allium sativum L. 
(garlic); a type of vegetable that is widely used in food all over the 
world, Caffeine from Coffea arabica L.; is a xanthine (purine) 
alkaloid, found inGuarana, yerba mate, Cacao and tea, Rosmarinus 
o_cinalis L.; is a common evergreen, aromatic shrub, Capsicum 
annuum L.(pepper); originate in southern America are among these 
compounds (143). Serenoa repens are promoted hair growth by the 
inhibition of 5α-reductase, HF vascularization and improvement of 
anagen phase(174, 175). Red ginseng oil upregulates Wnt/β-catenin 
and Shh/Gli-pathways-mediated expression of genes such as β-
catenin, Lef-1, sonic hedgehog, Cyclin D1, Cyclin E and also 
downregulates TGF-β and enhances anti-apoptotic protein Bcl-2 
expression (176, 177). As a result, Red ginseng oil may promote hair 
growth. Annurca apple consist of oligomeric procyanidin such as 
procyanidin B2 that improves skin quality and hair growth as well as 
to enhance hair density, weight and content of hair keratin (173, 178), 
Garlic may involve in hair growth by protecting keratinocytes (179). 
Caffeine in tea and coffee with downregulating TGF-β2 and 
upregulating IGF-1 in male and female increases hair shaft 
elongation, prolonging anagen phase and hair matrix keratinocyte 
proliferation. By the way, it has been reported that female HFs 
demonstrate a higher sensitivity to caffeine than male HFs(180, 181). 
Rosemary leaf extract improves hair growth by preventing 5α-
reductase activity(182). Finally, pepper rich in flavonoids, phenolic 
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acid derivatives, vitamin C and E, pro vitamin A and minerals such 
as: Fe2+, Mg2+, Ca2+ and etc. strongly increases IGF-I production in 
HFs and promoting hair growth(183). 
 
Wnt activators and SFRP1 antagonismfor AGA treatment: Due 
to the importance of wnt/β-catenin signaling in the activation of 
HFSCs, much attention has been paid to the use of wnt activators or 
wnt inhibitor antagonists. Although, the use of these activators or 
antagonists was raised in the treatment of neurodegenerative disorders 
such as; Alzheimer’s disease, Parkinson’s disease and Bipolar disease 
and also osteoporosis and vitiligo(184), but, over activation of wnt/ β-
catenin signaling pathway leads to stomach, colon, liver, ovaries and 
breast cancer (185, 186).  Known physiological activators of wnt/ β-
catenin signaling are the lypoglycoproteins of the Wnt family (19 
seen in humans), cell surface receptors of the Frizzled family (FZD, 
10 found in humans) and LRP5/6 co-receptors(187).The most 
important physiological inhibitor of wnt/ β-catenin signaling is 
Glycogen synthase kinase-3β (GSK3β). This kinasealso called tau 
phosphorylating kinase, is a proline-directed serine/threonine kinase 
which was originally identified due to its role in glycogen metabolism 
(188). The most known artificial activators of wnt/ β-catenin 
signaling are GSK3B inhibitors. These compounds include Lithium 
chloride(189)or peptide synthesis(190). In general, the inhibition of 
GSK3βincludes (191): 
 

 1. A staurosporine analogue as a modest inhibitor of GSK-3β 
 2. A series of 3-indolyl-4-indazolylmaleimides 
 3. Maleimides 18 and 22(poor to high potency for GSK-3β 

inhibition) 
 

In recent years, the use of wnt activators or secreted Frizzled-related 
protein 1(SFRP1) antagonism are raised in the treatment of 
AGA(192). SFRP1 itself is a secreted antagonist of wnt signaling. 
Indirubins are natural products obtained from edible mollusks which 
are effective in inhibitingGSK3β(193). Among them, we can mention 
6-bromo-indirubin-3’-oxime(6BIO) and indirubin-5-nitro-3’-
oxime(INO) which can activate wnt/ β-catenin signaling together with 
lithium chloride(194). It is believed that the mentioned products are 
able to effective in hair regeneration by proliferation and 
differentiation of HFSCs (195). 
 

CONCLUSION  
 
Activating of quiescent HFSCs through activation of wnt/β-catenin 
signaling pathway may be one of the current hopes in definitive 
treatment of AGA. HFSCs are potentially able to generate new hair 
follicle. Our study groupsupposes that hair loss can be overcome 
byusing wnt/β-catenin signaling activators. Its results will be 
published in the future. 
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