PREVALENCE AND OUTCOME OF CARDIOVASCULAR DISEASE AMONG ADMITTED PATIENTS IN A STATE TERTIARY HEALTH FACILITY, SOUTHWEST, NIGERIA

${ }^{1}$ Akinbade, Musiliat Olufunke, ${ }^{1}$ Oladotun, Nike Oloruntosin, ${ }^{2}$ Akinbowale, Busayo Temilola and ${ }^{2}$ Akinwale, Oladayo Damilola

${ }^{1}$ Lautech Teaching Hospital, Osogbo

${ }^{2}$ Lautech open and distance learning centre, ogbomoso
${ }^{3}$ Lautech Teaching Hospital
${ }^{4}$ Lautech teaching hospital, osogbo

ARTICLE INFO

Article History:

Received $17^{\text {th }}$ July, 2020
Received in revised form
$29^{\text {th }}$ August, 2020
Accepted $25^{\text {th }}$ September, 2020
Published online $30^{\text {th }}$ October, 2020

Key words:

Chinese, Organic Skin Care Products, Perceived Quality, Quality Cues, Willingness to Pay.

Abstract

Cardiovascular Diseases (CVDs) are major causes of morbidity and disabilities globally with high prevalence in developing countries including Nigeria. This study was a 5years retrospective descriptive adult patients with diagnosis of cardiovascular diseases admitted into male and female medical wards, LAUTECH Teaching Hospital, Osun state Nigeria, between January 2014 and December 20 19. Data that were extracted from admission and discharge register include age, sex, date of admission, diagnosis, and date of discharge or death, outcome of management and complications. Data were analyzed using descriptive and inferential statistics. The result revealed 23.1% prevalent rate of cardiov ascular disease which was found to be high among males than females. Card iovas cul ar dis eases discovered in the study area were hypertensive heart disease, congestive cardiac failure, dilated cardiomyopathy, ischeamic and hemorrhagic stroke. The study further revealed that majority of the patients improved and discharged home. In conclusion, cardiovascular diseases were observed to be high in the study area with high preval ence among male patients aged 60-69 years.

Citation: Yue Huang and Suo Lu. 2020. "Prevalence and outcome of cardiovascular disease am ong admitted patients in a state tertiary health facility, southwest, Niger ia", Asian Journal of Science and Technology, 11, (10), 11262-11266.

Copyright © 2020, Yue Huang and Suo Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Cardiovascular disease (CVD) is one of the major causes of death and disability among men and women in both developed and developing countries. Millions of people are affected world- wide with the lifetime risk exceeding 60% (WHO, 2018). Cardiovascular diseas es are a group of disorders of the heart and blood vessels which include coronary heart disease, Hypertension or Hypertensive disease, Rheumatic heart disease, cerebrovascular accident and other conditions like Hypertensive encephalopathy, ischeamic heart disease, myocardial in fection, disseminated cardiomyopathy (WHO, 2003). Globally, in 2008, 63% of deaths were reported due to non-communicable disease, out of which 48% were due to cardiovascular related disease along (Alwan, 2011). Cardiovascular Disease contributed 88% of the death recorded in sub-Saharan A frican and the global mortality burden from

[^0]CVD has been projected to increase by 20% by the year 2020 with the greatest contribution expected from region such as Sub-Saharan African (Moran et al., 2013). However, associated mortality from CVD differ between Sub-Saharan African and developed Western Countries which is due to the fact that coronary artery disease is the main cause of death among black America, stroke was the leading cardiovascular causes of death in sub-Saharan A frica while hypertensive heart disease and heart failure are also commonly reported cardiovas cular causes ofdeath in sub-Saharan A frica including Nigeria (Sliwa et al., 2008; Moran, et al., 2013; Wang et al., 2014). Moreover, the burden of CVD in developing countries has increased signi ficantly, twice as many deaths from CVD occur in developing countries as in developed countries (WHO, 2002). The main types of cardiovascular disease are coronary heart disease (CHD) and stroke, about half of all deaths from CVD are from CHD and about a quarter are from strokes coronary heart disease is now the leading cause of death world-wide, with estimated yearly death value of 3.8% million in men and 3.4 million in women (Peterson et al., 2005).

It is estimated that $80-90 \%$ of people dying from CHD have one or more major risk factor that is influenced by li festyles (Mackay \& Mensah, 2004). According to Mackay \& Mensah (2004), it was identified that high blood pressure is a major risk factor for heart disease people aged over 50years , the World Health Report also estimate that 60% of coronary heart disease around 40% of ischeamic stroke in developed countries is due to total blood cholesterol more than $3.8 \mathrm{mmo} / \mathrm{L}$ (WHO 2002). The major modi fiable risk for the development of coronary heart dise ase were smoking, which account for an estimated 32% death from cardiovascular dise ase in men aged $35-69 y r s$ and 60% of CVD death in women of the same age (Peterson, et al, 2005). Moreso, Peterson et al (2006) stated that Diabetes mellitus magnifies the effect of other risk factors including raised cholesterol level, raised blood pressure, smoking and obesity. Men with type two diabetes mellitus have a 2-4 fold great er annual risk of coronary heart disease while women have an annual 3-5 fold greater annual risk of coronary heart disease. Among other factors are diet (WHO, 2002), physical inactivity (WHO, 2002), and obesity (Peterson et al, 2005.).

According to Mackey and Mensah (2004), Ischeamic stroke account for 80% of strokes which may be thrombotic or embolic strokes while $2-\%$ of strokes are cause by heamorrhage. Annually, about 15 million people suffer a stroke worldwide of which 5 million die and another 5 million are leff with permanent disabilities (WHO, 2004). Stroke however, is the third most common cause of death in developed countries, usually uncommon in person less than 40 years (WHO, 2004). Death rate from stroke for people less than 65 years have fallen by 23% in the past 10 years, recently rates h ave d eclined at slower rate p articularly among younger age group. The aim of this study is to determine the prevalence and outcome of cardiovascular disease among admitted patients in male and female medical wards of LAUTECH Teaching Hospital, Osun State, S outh-West, Nigeria

STATEMENT OF PROBLEM

Cardiovascular diseases account for the majority of disabilities and deaths that occur due to chronic diseases (Paradis \& Chiolero, 2011). Global prevalence of cardiovascular disease (CVD) is growing on daily basis, most especially in the developing countries and WHO revealed that 80% of deaths from cardiovascular diseases and 87% of related disability currently occur in low and middle income countries (WHO, 2002). The high burden of mortality from cardiovascular causes in developing nations which is estimated at 9 million in 1990 and expected to rise to 19 million by 2020 , is only partially explained by their large populations (Murray \& Lopez, 1996). Numerous international and local researches had been carried out to assess the prevalence and risk factors of CVDs. However, in Nigeria, reports on the prevalence and outcome ofc ardiovascul ar disease (CVD) are scarce (Oguoma et. al, 2015). Therefore, the objective o fthe study is to assess the prevalence and out come of CVD in LAUTECH T eaching Hospital, Osogbo, Osun State, Nigeria

Objectives

- To determine the prevalence of CVD among male and female patients admitted to medical ward in LAUTECH Teaching Hospital (LTH) Osogbo, Osun State.
- To determine the outcome ofCVD among admitted male and female patients admitted to medical wards in LAUTECH Teaching Hospital (LTH) Osogbo, Osun State.

RESEARCH Q UESTIONS

- What is the prevalence of CVD among admitted patient in medical wards?
- What is the outcome ofCVD among admitted patients in medical wards?

HYPOTHESES

Ho There is no significant relationship between selected socio-demographic variables (Age, Gender, Marital status and Occupation) and prevalence ofCVD

Ho There is no significant relationship between selected socio-demographic variables (Age, Gender, Marital status and Occupation) and outcome of CVD

METHODOLOGY

This study was a 5 yrs retrospective, descriptive study of consecutive adult patient with diagnosis of cardiovascular disease admitted into male and female medical wards LAUTECH Teaching Hospital, a tertiary health facility in Osun state Nigeria, between January 2014 and December 2019. Data that were extracted from admission and discharge register include age, sex, date of admission, diagnosis, and date of discharge or death, outcome of management and complications, where the diagnosis could not be ascertained, the case file w as collected from the medical record department to ascertain the di agnosis. Identi fication of case was based on documented diagnosis of CVD by the managing physicians either at the time of patients' discharge from the hospital or death. Ethical clearance w as obtained from the health research and ethical committee from faculty of Nursing Sciences, Ladoke Akintola University of Technology (LAUTECH), Osogbo, Osun State.

Inclusion Criteria: All admitted patients in male and female wards between January 2015 and December 2019.

Exclusion Criteria: All out patients in clinic and emergency were ex cluded

DATA ANALYSIS: Data were coded and analysis using SPSS version 21 and pres ented in tables. Descriptive statistics of frequency, percentage, mean and standard deviation were used where applicable and in ferential statistics of chi-square for stated testing hypothesis at 0.05 level of significant. Cross tabulation was also used to compare the two groups (male and female). Continuous variable was expressed as means with standard deviation, categorical variable was expressed as frequency with the percentage, and comparison of continuous variable between the group (male and female) was expressed with cross tabulation.

RESULTS

A total number of 1,816 patients were admitted between the year 2014 and 2019, out of which $1,050(57.8 \%)$ were males while 766(42.2\%) were females.

Table 1. Socio-Demographic factors of Patients with Cardiovascular Disease by Gender

Variable	Male	Female	Total	X^{2}	df	p-value
Age	F (\%)	F (\%)	F (\%)			
20-29	5 (2.2)	8(4.1)	13(3.1)			
30-39	10 (4.4)	17(8.8)	27(6.4)			
40-49	32 (14.2)	30(15.5)	62(14.8)			
50-59	53 (23.6)	33(17.0)	86(20.5)			
60-69	68 (30.2)	32(16.5)	100(24.0)			
70-79	38 (16.9)	43(22.2)	81(19.3)			
80-89	17 (7.6)	27(13.9)	44(10.5)			
90-99	2 (0.9)	4(2.0)	6(1.4)			
Total	225 (100.0)	194(100)	419(100)	21.254	7	0.003
Mean age	$\begin{aligned} & 60.7 \pm 14.3 \\ & 60.8 \pm 15.95 \end{aligned}$	61.1 ± 17.6				
Marital status						
Single	6 (2.7)	7(3.6)	13(3.1)			
Married	219 (97.3)	151(77.8)	$370(88.3)$			
Divorce	0 (0)	1(0.5)	$1(0.5)$			
Widow	0 (0)	35(18.1)	35(18.1)			
Total	225(100.0)	194(100)	419(100)	0.260	3	0.000
Occupation						
Trading/Business	28 (12.4)	111(57.2)	139(33.2)			
Skilled Artisan	21 (9.3)	9(4.6)	30(7.2)			
Transporter	8 (3.6)	0 (0)	8(1.9)			
Farm ing	16(7.1)	1(0.5)	17(4.1)			
Cleric/Clergy	6 (2.7)	2(1.1)	8(1.9)			
Student	6 (2.7)	3(1.5)	9(2.1)			
Civil Servant	41 (18.2)	21(10.8)	62(14.8)			
Self-Employed	15 (6.7)	1(0.5)	16(3.8)			
Retiree	84 (37.3)	42(21.7)	126(30.0)			
House wife		4(2.0)	4(0.9)			
Total	225 (100.0)	194(100)	419(100)	113.626	9	0.000

Table 2. Prevalence of Cardiovas cular Diseases among Admitted Patients

Variable	Male	Female	Total	X^{2}	df	P-value
Cardiova scular disease	$\mathrm{F}(\%)$	$\mathrm{F}(\%)$	$\mathrm{F}(\%)$			
Hy pertensive Heart Disease	$68(30.2)$	$55(28.4)$	$123(29.4)$			
Dilated Cardiomyopathy	$23(10.2)$	$20(10.3)$	$43(10.3)$			
Congestive cardiac failure	$48(21.3)$	$55(28.4)$	$103(24.6)$			
Transient ischeamic attack	$20(8.9)$	$6(3.1)$	$26(6.2)$			
Ischeam ic stroke	$43(19.1)$	$39(20.1)$	$82(19.5)$			
Heamorrha gic stroke	$23(10.2)$	$19(9.7)$	$42(10.0)$			
Total	$225(100.0)$	$194(100)$	$419(100)$	7.923	5	0.161

Table 3. Outcome of Cardiovas cular Disease a mong admitted patients

Variable	Male	female	Total	X^{2}	df	p-value
Outcome of cerebrova scular disease	$\mathrm{F}(\%)$	$\mathrm{F}(\%)$	$\mathrm{F}(\%)$			
Discharge	$164(72.9)$	$138(71.1)$	$302(72.1)$			
Discharge a gainstmedical advise	$4(1.8)$	$16(8.2)$	$20(4.8)$			
Referred	$4(1.8)$	$12(6.2)$	$16(3.8)$			
Death	$53(18.7)$	$28(14.5)$	$81(19.3)$			
Total	$225(100.0)$	$194(100)$	$419(100)$	18.965	3	0.000

Table 4. Relationship bet ween selected socio-demographic characteristics of admitted patient and pre valence of cardiovascular diseases

ANOVA $^{\text {a }}$					
Model	Sum of Squares	df	Me an Square	F	Sig.
Regression	137.020	4	34.255	12.570	$.000^{6}$
Residual	1128.240	414	2.725		
Total	1265.260	418			
a. Dependent Variable: Cardiovasc ular Diseases					
b. Predictors: (Constant), Occupation, Age, Marital Status, Gender					

Table 5. Relationship bet ween selected socio-demographic charac ter istics of admitted patients and outcome of car diovascular diseases

ANOVA $^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	17.876	4	4.469	3.150	$.014^{b}$
Residual	587.428	414	1.419		
Total	605.303	418			
a. Dependent Variable: Outcome of Cardiovascular Diseases					
b. Predictors: (Constant), Occupation, Age, Marital Status, Gender					

Cardiovascular diseas es were observed in 419 patients. This represents 23.1% total admission. Cardiovascular diseases were found to be high among males than females as more than halfo f $225(53.7 \%$) of the patients were male and less than half 194(46.3\%) were females. The age ranged between 20 and 99 years with mean age of 60.8 ± 15.95 years. About 267(63.7\%) were between age $50-79$ years with male being relatively younger than female (60.7 ± 14.3 and 61.05 ± 17.60 respectively) while $102(24.3 \%)$ and $50(12.0 \%)$ were betw een age 24-49 and $80-89$ years respectively. The result further shows that there is statistical significant relationship between age and gender of admitted patient with cardiovascular diseases $\left(\mathrm{X}^{2}=21.254\right.$; $\mathrm{d} f=7 ; \mathrm{p}$-value $=0.003$) in the study area. Cardiovas cular diseases were signi ficantly common in patients aged 60-69 years $100(24.0 \%)$ with higher prevalent in male 68(30.2\%).

Table 2 shows the prevalence of cardiovascular diseases. Cardiovascular diseases discovered in the study area were hypertensive heart diseases $123(29.4 \%)$, congestive cardiac failure $103(24.9 \%)$, ischeamic stroke $82(19.5 \%)$, dilated cardiomyopathy $43(10.3 \%)$, hemorrhagic stroke $42(10.0 \%)$ and transient ischeamic attack $26(6.2 \%)$. A significant male prevalence for hypertensive heart diseas es, transient ischeamic attack, dilated cardiomyopathy, ischeamic stroke and hemorrhagic stroke were also observed. Moreso, there is no statistical significant relationship between gender and prevalence of cardiovascular diseases among the admitted patients in the study area. Table 3 shows that majority 302(72.1\%) of admitted patient with cardiovascul ar dis eases were discharged home alive, while 81 (19.3\%) death were recorded. The result further shows that there is statistical significant relationship between gender of patients with cardiovascular diseases and outcome of cardiovascular diseases $\left(\mathrm{X}^{2}=18.965 ; \mathrm{df}=3 ; \mathrm{p}\right.$-value $=0.000$)

TEST OF HYPOTHESIS

Table 5 indicates that regression model predict the dependent variable ($\mathrm{P}=0.000$) which is less than 0.05 indicating statistical significant relationship between the predictors (Age, Gender, Marital status and occupation) and prevalence of cardiovascular diseases. Table 5 indicates that regression model predict the dependent variable $(\mathrm{P}=0.014)$ which is less than 0.05 indicating statistical significant rel ationship between the predictors (Age, Gender, Marital status and occupation) and outcome of cardiovascul ar diseases

Discussion of findings: The mean age of admitted patient with Cardiovascular Disease (CVD) was 60.8 ± 15.95 years and was slightly more male (30.2\%) than females (16.2\%). Majority 370 (88.3%) were married, major occupation of the patient was Trading (39 (33.2\%) while 126 (30.0\%) were retiree. This study was in tandem with the study conducted in South Indian with average age (60.12 ± 9.89 years) of patient with CVD and 89% were above age 40 years showing the strong association between the higher age and prevalence of CVD (Prasanna et al., 2013).This is further supported by Onwubere and Ike (2000) who reported that 56.5% of hypertensive patients admitted in the ward were in the 50$70 y e a r s$ age group. Finding from the study reveal ed 23.1% prevalence of cardiovascular dis ease among admitted patient in the study area, with slight high prevalence among male than female, 53.7% and 46.3% respectively.

This is supported by Nelson et al. (2004) in their study with high prevalence (20.46%) of CVD among medical admission in UNTH Enugu; South West Nigeria. Another study concluded in Sub-Saharan African indicated 19.9\% prevalence rate of CVD (Etyang \& Scoltt, 2003). Tamene et al. (2019) also found out that 57% of patients with cardiovascular diseases were females while 43% were males and among cardiovascular diseas es identified were congestive cardiac failure (44.4%) and hypertensive heart diseas es (44.1%). This study is in contrast with the study conducted by Nelson et al. (2014) who found that cardiovascular diseases were more prevalent among female patients. The study further revealed that hypertensive heart disease (29.4\%) was common among admitted patient which was slightly high in male than female, followed by congestive cardiac failure (24.6%), and recorded more in females than male. However, Cardiovascular A ccident ranging from transient ischeamic attack to ischeamic and hemorrhagic stroke was observed to be more prevalent (35.8%), This was observed more in male than female 38.2% and 32.9% respectively. Therefore, a significant male prevalence for hypertensive heart disease, transient ischeamic attack, ischeamic stroke, dilated cardiomyopathy, ischeamic and hemorrhagic stroke were observed. This finding is in tandem with the study conducted by Giosia et al. (2017) that the incidence ofCVD in women is usually lower than in men, but women have a higher mortality and worse prognosis after acute cardiovas cular events. Moreso, clinical studies of CHD have found that women in CHD are usually older than men with CHD and have a higher expression of CVD risk factors (Garcia et al., 2016).

This finding is also in line with Ameri can heart association (AHA) report (2016) that among the 5.1 million cases of heart failure, 52.0% were men and 47.1% were women (Mozaharian, et. al., (2016). Also women are more prone to have heart failure and higher rates of hospitalization and mortality compared with men is (Mozaharian, et. al., 2016). Ahmed (2015) also recorded prevalence rate of hypertension ranging from 26.0% to 50.7% in male and 20.9% to 5.2% in females. Furthermore, the finding revealed that majority of patient with CVD were discharged home after they have recovered from the condition, however, less than one fifth of patient died on admission as a result of CVD related condition with higher mortality recorded among male. Hence, among 419 patient admitted with cardiovascular diseases, 302 (72.1\%) w ere discharged and $81(19.3 \%)$ died. This finding is supported by Buckley and Piltluck, (2015), in a health system with high quality of care patient get the necessary and appropriate care needed with better outcome of condition being managed them for more so, high quality in a health system with high quality care, patients get the care they need, when they need it, without undergoing unnecessary or inappropriate treatment, for better out of disease condition. More so, high quality care not only provides patient with the best opportunity to achieve the outcome they seek.

Limitations of the study: A lot of constraints were observed in the process of carrying out this study. Firstly, there were cases of incomplete data as a result of inadequate documentation. Secondly, due to industrial and strike action that led to partial of activity in the hospital and there was no patient admission for certain period included in the study.

Conclusion and Recommendation

Cardiovascular diseases were observed to be high in the study area, with high prevalence among male patients between ages 60 and 69 years. The most prevalent cardiovascular dis eases were ischeamic and hemorrhagic stroke, hypertensive heart diseases and congestive cardiac failure. It is therefore recommended that early detection, prompt management of the condition should be the goal of individual patients, health care personnel and Government. Moreso, appropriate preventive measure such as regular exercise, diet regulation and regular check-up should be put in place to reduce complications as well as the need for hospital admission so as to improve the outcome of cardiovascular diseases.

REFERENCES

Betrand E. 1993. Cardiovascular disease in developing countries. World Health Stat Q 46:108-15.
Drewnowski A, Popkin BM. 1997. The nutrition transition: New trends in the global diet. Nutr Re., 55:31-43. .
Etyang AO, Scott JA. Medical causes of admissions to hospital among adults in Africa: A systematic review. Glob Health Action 2013, 6: 19090.
Hakeem R, Thomas J, Badruddin SH. Urbanization and coronary heart disease risk factors in South Asian children. J Pak Med Assoc 2001;51:22-8.
Hakeem, R., Thomas, J. \& Badruddin, S. H. (2001). Urbanization and coronary heart disease risk factors in South Asian children. J Pak Med Assoc. 51:22-8.
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, AdairRohani H, et al. A comparativerisk assessment of burdenofdisease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.
Lozano R, Naghavi M, Lim SS, Foreman K, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012;380:2095-128.

Mackay J, Mensah G, eds. The Atlas of Heart Disease and Stroke, World Health Organization, Geneva, 2004.
Muna WF. Cardiovascular disorders in Africa. World Health Stat Q 1993;46:125-33.
Murray C, Lopez AD. Global pattems of cause of death and burden of disease in 1990, withpro jections to 2020. In: Investing in Health Research and Development. Report of the ad Hoc Committee on Health Research relating to Future Intervention Options. W orld Health Organization. Geneva; 1996:1-268.
National Statistics, Health Statistics Quarterly 30, Spring 2006.

Opie LH, Seedat YK. Hypertension in sub-Saharan African populations. Circulation 2005;112:3562-8.
Pearson TA, Jamison DT, Trijo-Gutierrez H. Cardiovas cular disease. In: Jamison DT, editor. Disease ControlPriorities in Developing Countries. New York: Ox ford University Press; 1993. p. 577-99.

Pearson TA. Global perspectives on cardiovascular disease. Evid Based Cardiovasc Med 1997;1:4-6.
Petersen S, Peto V, Scarborough P, Rayner M. 2005 Coronary Heart Disease Statistics - 2005 edition, British Heart

Foundation Health Promotion Research Group, Department of Public Health, University of Oxford, 2006.

Peterson S, Peto V, Rayner M. European cardiovas cular disease statistics - 2005 edition, British Heart Foundation Health Promotion Research Group, Department of P ublic Health, University of Oxford.
Peterson S, Peto V, Scarborough P, Rayner M. 2005 Coronary Heart Disease Statistics -2005 edition, British HeartFoundation Health Promotion Research Group, Department of Public Health, University of Oxford, 2006.

Taylor R, Jalaludin B, Levy S, Montaville B, Gee K, Sladden T. Prevalence of diabetes, hypertension and obesity atdifferent levels of urb anization in Vanuatu. Med J Aust 1991;155:86-90.
Unachukwu CN, Agomuoh DI, Alasia DD. Pattern of noncommunicable diseases among medical admissions in Port Harcourt, Nigeria. Niger J Clin Pract 2008;11:14-7.
van Rooyen JM, Kruger HS, Huisman HW, Wissing MP, Margetts BM, Venter CS, et al. An epidemiological studyof hypertension and its determinants in a population in transition: The THUSA study. J Hum Hypertension 2000; 14:779-87.
Van Rooyen JM, Kruger HS, Huisman HW, Wissing MP, Margetts BM, Venter CS, et al. An epidemiological studyofhypertension and its determinants in a population in transition: The THUSA study. J Hum Hypertension 2000;14:779-87. Back to cited text no. 10
Wang H, Dwyer-Lindgren L, Lofgren KT, Rajaratnam JK, Marcus JR, Levin-Rector A, et al. Age-specific and sex specific mortality in 187 countries, 1970-2010: A systematic analysis for the global burden of fisease study 2010. Lancet 2012;380:2071-94.

Wang H, Dwyer-Lindgren L, Lofgren KT, Rajaratnam JK, Marcus JR, Levin-Rector A, et al. Age-specific and sex specific mortality in 187 countries, 1970-2010: A systematic analysis for the global burden of diseasestudy 2010. Lancet 2012;380:2071-94.
World Health Organization (WHO). Non-communicable diseases country profiles 2011. WHO Global Report. Geneva, Switzerland; 2011:1-209
World Health Organization (WHO). Non-communicable diseases country profiles 2011. WHO Global Report. Geneva, Switzerland; 2011:1-209
World Health Organization. The World Health Report 2002. Reducing risks, Promoting Healthy Li fe. WorldHealth Organization: Geneva, 2002.

[^0]: *Co rrespo nding a uthor: ${ }^{1}$ Aki nbade, Musi liat Oluf unke, Lautech Teaching Hospital, Osogbo.

