
      
  
 
 

 

 
 

 
 
 

 

RESEARCH ARTICLE 
 

STATE SPACE APPROACH TO BOUNDARY VALUE PROBLEM FOR DOUBLE POROUS 
VISCOELASTIC MEDIUM 

 
*1Rajneesh Kumar, 2Aseem Miglani, 2Sonika Chopra and 3Monika Kalra 

 
1Department of Mathematics, Kurukshetra University, Kurukshetra Haryana, India; 2Department of 

Mathematics, Chaudhary Devi Lal University, Sirsa, Haryana India; 3Department of Mathematics, Chandigarh 
University, Gharuan, Mohali, Punjab India 

 
 

 

 ARTICLE INFO    ABSTRACT 
 

 

The present paper deals with a boundary value problem in a homogeneous, isotropic double porous 
viscoelastic medium subjected to thermomechanical sources. After developing mathematical 
formulation, a state space approach has been applied to investigate the problem. As an application of the 
approach, normal force and thermal source have been taken to illustrate the utility of the approach. The 
expressions for the components of normal stress, equilibrated stress and the temperature change are 
obtained in the frequency domain and computed numerically. Numerical simulation is prepared for 
these quantities and simulated results for these quantities are depicted graphically for a particular 
model. Some particular cases of interest are also deduced from the present investigation. 
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INTRODUCTION 
 

The linear theory of viscoelasticity described by the linear 
behaviour of both elastic and non-elastic materials, provide a 
basis for describing the attenuation of seismic waves. Before 
1960 most of the work on linear viscoelastic wave propagation 
for which explicit solutions were obtained was essentially for 
dimensional and for specific material. Bland (1) has given 
account of three dimensional linear viscoelasticity theories. He 
concluded that as in perfectly elastic isotropic medium, under 
assumption of small displacement, two types of waves can be 
propagated in an isotropic viscoelastic medium when body 
forces are absent. The Kelvin-Voigt model is one of the 
macroscopic mechanical models often used to describe the 
viscoelatic behaviour of a material. Iesan and Scalia (2) proved 
some theorems in the theory of thermoviscoelasticity. Othman 
et al. (3) studied the generalized thermoviscoelastic plane 
waves propagation with two relaxation times. Many branches 
of engineering including material science, petroleum industry, 
chemical engineering, biomechanics and other such fields of 
engineering include theories of porous media. Representation 
of a fluid saturated porous medium as a single phase material 
has been virtually discarded.  The material with the pore 
spaces such as concrete can be treated easily because all 
concrete ingredients have the same motion if the concrete body 
is deformed. However the situation is more complicated if the 

 
pores are filled with liquid and in that case the solid and liquid 
phases have different motions. Due to these different motions, 
the different material properties and the complicated geometry 
of pore structures, the mechanical behaviour of a fluid 
saturated porous thermoelastic medium becomes very 
complicated. So researchers from time to time, have tried to 
overcome this difficulty and we see many porous medium 
theories in the literature. A brief historical background of these 
theories is given by de Boer (4, 5). Biot (6) proposed a general 
theory of three-dimensional deformation of fluid saturated 
porous solids. Biot theory is based on the assumption of 
compressible constituents and till recently, some of his results 
have been taken as standard references and basis for 
subsequent analysis in acoustic, geophysics and other such 
fields. Another interesting theory is given by Bowen (7), de 
Beor and Ehlers (8) in which all the constituents of a porous 
medium are assumed to be incompressible. The fluid saturated 
porous material is modelled as a two phase system composed 
of an incompressible solid phase and incompressible fluid 
phase, thus meeting the requirement of many problems in 
engineering practice, e.g. in soil mechanics. One important 
generalization of Biot’s theory of poroelasticity that has been 
studied extensively started with the works by Barenblatt et al. 
(9), where the double porosity model was first proposed to 
express the fluid flow in hydrocarbon reservoirs and aquifers. 
The double porosity model represents a new possibility for the 
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study of important problems concerning the civil engineering. 
It is well-known that, under super-Saturation conditions due to 
water of other fluid effects, the so called neutral pressures 
generate unbearable stress states on the solid matrix and on the 
fracture faces, with severe (Sometimes disastrous) instability 
effects like landslides, rock fall or soil fluidization (typical 
phenomenon connected with propagation of seismic waves). 
Wilson and Aifantis (10) presented the theory of consolidation 
with the double porosity. Khaled, Beskos and Aifantis (11) 
employed a finite element method to consider the numerical 
solutions of the differential equation of the theory of 
consolidations with double porosity. Wilson and Aifantis (12) 
discussed the propagation of acoustics waves in a fluid 
saturated porous medium. The propagation of acoustic waves 
in a fluid-saturated porous medium containing a continuously 
distributed system of fractures is discussed. The porous 
medium is assumed to consist of two degrees of porosity and 
the resulting model thus yield three types of longitudinal 
waves, one associated with the elastic properties of the matrix 
material and one each for the fluids in the pore space and the 
fracture space. Beskos and Aifantis (13) presented the theory 
of consolidation with double porosity-II and obtained the 
analytical solutions to two boundary value problems. Khalili 
and Valliappan (14) studied the unified theory of flow and 
deformation in double porous media. 
 
Kumar and Kumar (15) investigated the wave propagation at 
the boundary surface of elastic and initially stressed 
viscothermoelastic diffusion with voids. Sharma and Kumar 
(16) studied the propagation of plane waves and fundamental 
solution in thermoviscoelatsic medium with voids. Kumar et al 
(17) investigated the fundamental solution in micropolar 
viscothermoelastic solids with voids. Svanadze(18) Studied the 
problem of plane waves and steady vibrations in the theory of 
viscoelasticity for Kelvin-Voigt material with double porosity. 
Svanadze (19-21) investigated some problems on elastic solids 
and thermoelastic solids with double porosity. In recent years 
the state space description of linear system has been used 
extensively in various areas of engineering, such as the 
analysis of control systems. The state space approach offers an 
attractive way to avoid the difficulties of the traditional linear 
model approach. Bahar and Hetnarski investigated good 
number of problems in thermoelasticity by using state space 
approach (22-27). Sharma (28) studied the one dimensional 
problems in generalized theories of thermoelasticity subjected 
to heat source and body forces by using state space approach. 
Othman et al (29) established the model of the two-
dimensional generalized thermo-viscoelasticity with two 
relaxation times and used normal mode analysis to obtain the 
exact expressions for the temperature distribution, thermal 
stresses and the displacement components. Ezzat et al (30) 
applied state space approach to generalized thermo-
viscoelasticity with two relaxation times. Maghraby et al (31) 
used the state space approach to the one dimensional problem 
of thermoelasticity with two relaxation times. Youssef and Al-
Lehaibi (32) considered a half-space filled with an elastic 
material and used state space approach to obtain the general 
solution for any set of boundary conditions. Youssef and 
Harby (33) considered an infinite elastic body with a spherical 
cavity and constant elastic parameters, and used state space 
technique to obtain the general solution for any set of 
boundary conditions. Sherief and El-Sayed (34) applied the 
state space approach to two-dimensional generalized 
micropolar thermoelasticity. Kumar et al (35) studied a 

boundary value problem for thermoelastic material with 
double porosity using state space approach. Kumar and Vohra 
(36) investigated the plane deformation in elastic materials 
with double porosity using state space approach. 
 
In the present paper, the state space approach has been used to 
solve a boundary value problem for a double porous 
viscoelastic medium. The expressions for normal stress, 
equilibrated stress and temperature distribution are obtained in 
closed form, computed numerically and represented 
graphically for normal force and thermal source to show the 
effect of viscosity. Some particular cases of interest are also 
deduced from the present investigation. 
 
Basis Equations  
 
Following Iesan and Quintanilla (37), the constitutive relations 
and field equations for homogeneous double porous 
viscoelastic medium without body forces, extrinsic 
equilibrated body forces and heat sources can be written as: 
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where  and  are Lame’s constants,   is the mass density; 

   ;)23(   is the linear thermal expansion; C  is the 

specific heat at constant strain, iu  are the displacement 

components; ijt
 

is the stress tensor; 
21  and kk  

are 

coefficients of equilibrated inertia; 
1v  

is the volume fraction 

field corresponding to pores and 
2v  is the volume fraction 

field corresponding to fissures;    and  are the volume 

fraction fields corresponding to 
21   and  vv  

respectively; 
1  

is 

the equilibrated stress corresponding to 
1v ; 

1  
is the 

equilibrated stress corresponding to
2v ; k  is the coefficient of 

thermal conductivity and 
211   ,  ,  ,  ,  , bdb  

are constitutive 

coefficients; ij  is the Kronecker delta; ∆  is the Laplacian 

operator and T  is the temperature change measured from the 
absolute temperature )( 00 oTT  ; a superposed dot represents 

differentiation with respect to time variable t. Assuming the 
viscoelastic nature of the material described by Voigt (38) 
model of linear viscoelasticity, we replace the porous 
thermoelastic constants 
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respectively in equations (1)-(7) and, we obtain 
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 are  the  

viscoelastic constants. 

 

Formulation and solution of the problem: A homogeneous, 
isotropic thermoelastic solid with double porosity structure 
occupying the region 0 ≤ � < ∞, whose state variable depend 
only on the space variables distance � and time t, has been 
considered for which the displacement components 

),3,2,1( iui  
volume fraction � and  , and temperature 

change T are taken as 
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Here   and 
1c  are the constants having dimensions of 

frequency and velocity in the medium respectively. 
 
Making use of the dimensionless quantities given in (16) in 
equations (11)-(14), we get 
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Assuming the time harmonic solution of the equations (17)-
(20) as 
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Equations (17)-(20) with the aid of equation (22) yield 
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State –Space Formulation: Choosing a state variable 
displacement  u , volume fraction   

and  , temperature 

change T in the �-direction, the equations can be written in 
the matrix form as 
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The formal solution of system (27) can be written in the form  
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Equation (29) is biquartic in 2  yield four roots say, 

4321   and     ,   ,  . Now, the Taylor series expansion for 

matrix exponential in equation (28) is given by 
 














0 !

])([
])(exp[

n

n

n

xA
xA


 .                     (31) 

 

Using Cayley-Hamilton theorem, this infinite series can be 
truncated as  
 

3
3

2
210])(exp[ AaAaAaIaxA                      (32) 

 

where 3210    ,   ,   , aaaa
 
are parameters depending on x  and 

 . According to Cayley-Hamilton theorem the characteristic 

roots 4321   ,  ,  ,  
 
of the matrix A must satisfy 

equation (32). Therefore, we get  
 

,]-exp[
3

13

2

121101  aaaIax   

,]-exp[
3

23

2

222102  aaaIax   

,]-exp[
3

33

2

323103  aaaIax   

.]-exp[
3

43

2

424104  aaaIax         (33) 

 
Solving the above system of equations, we obtain the value of 

parameters 3210   ,  ,  , aaaa
 
and these values are given in 

appendix. 
 
Therefore, we have 
 

),(])(exp[  xLxA   ,                       (34) 

 
where ),( xL  is a 8�8 matrix with the components 
 

,     ,     ,     , 33142313131212011 RalRalRalNaal   
 

,     ,     ,     , 82247223620225321 NalNalNaalRal   
 

,     ,     ,      , 12234112033102329331 NalNaalNalRal   
 

,     ,     ,     , 162044152431424213341 NaalNalNalRal 

(35) 
 

in which  
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Rewriting the equation (28) with the aid of equation (34) yield, 
 

).,0(),(),(  VxLxV                        
(36) 

 
Therefore, we obtain 
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Boundary Conditions: A homogenous isotopic thermoelastic 
solid with double porosity structure occupying the region 

 x0  is considered. The bounding plane 0x  is 
subjected to a normal force and a thermal source. 
Mathematically these can be written as, 
 
(i) ],exp[111 tiFt                          (38) 

(ii) ],exp[11 tiF                           (39) 

(iii) ],exp[11 tiF                           (40) 

(iv) ],exp[2 tiFT                          (41) 

 
where 

21  and FF  
are the magnitude of the force and constant 

temperature applied on the boundary. 
 
Substituting the values of 

1111   and    ,  ,  ,  ,  ,  tTu  
from equations (8), (9), (10), and (37) in the equations (38)-
(41), with the aid of equations (16) and (22), we obtain 
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The values of 1621   ........,..........  ,  , QQQ
 
are given in the 

appendix. 
 

Solving (42) for 4321   ,  ,  , AAAA
 

 and substituting the 

resulting values in equation (37) yield the value of normal 
stress, equilibrated stress and temperature change. 
 

,)( 4
4

3
3

2
2

1
111

tieSSSSt 





















  

    
(43) 

,)( 4
8

3
7

2
6

1
51

tieSSSS  



















   

    (44) 

,)( 4
12

3
11

2
10

1
91

tieSSSS  



















   

    (45) 

.)( 4
44

3
43

2
42

1
41

tiellllT 



















      (46) 

 

Particular Cases 
 

Case I: If 0  2 F in equations (43)-(46), we obtain the 

corresponding expression for normal force. 
Case II: If 0  1 F  in equations (43)-(46), we get the 

corresponding expression for thermal source. 
 

NUMARICAL RESULTS AND DISCUSSION 
 

The material chosen for the purpose of numerical computation 
is copper, whose physical data is given by Sherief and Saleh 
(39) as 
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The software Matlab has been used to determine the values 
of normal stress and equilibrated stresses and temperature 
distribution. The variation of these values with respect to 
distance x are shown in figures (1)-(8), respectively. In all 
these figures, the curves for double porous viscoelastic 
medium and double porous thermoelastic medium are 
represented by VDP and DP respectively. 
 

 
 

Fig. 1.Variation of normal stress 
11t  

with respect to 

distance x . (Normal force) 
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Fig. 2. Variation of equilibrated stress 
1  

with respect to 

distance x . (Normal force) 
 
 

 
 

 

Fig. 3. Variation of equilibrated  stress 
1 with respect to distance 

x . (Normal force) 

 

 
 

Fig. 4. Variation of temperature distribution T with respect 
to distance X. (Normal force) 

 
 

Fig. 5. Variation of normal stress 
11t  with respect to distance 

� (Thermal source) 
 

 
 

Fig. 6. Variation of equilibrated stress 
1  

with respect to 

distance x . (Thermal source) 
 

 
 

Fig. 7. Variation of equilibrated stress 
1 with respect to distance 

x . (Thermal source) 
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Fig. 8. Variation of temperature distribution T with respect to 
distance x . (Thermal source) 

 
Normal Force:  Fig.1 depicts the variation of normal stress t11 

with respect to distance x due to normal force. It is found that 
for VDP, the value of

11t increase for the region 0 < � ≤ 4 and 

then almost constant for the remaining region whereas for DP, 
it increase for the region 0 < � ≤ 2 and then becomes slightly 
oscillatory in the remaining region. Also it is noticed that the 
magnitude value of

11t are more for VDP as compared to that 

DP. mFig.2 and 3 show the variation of equilibrated stresses 

1 , 
1 with respect to distance x due to normal force. From 

figs., it is noticed that for VDP, the values of 
1 , 

1 decrease 

for 0 < � ≤ 4 and then become almost constant for the 
remaining region, whereas for DP, it shows an oscillatory 
nature. Also, the magnitude values are higher for DP in 
comparison to VDP except for the region 0 < � ≤ 2. Fig.4 
depicts the variation of temperature distribution T with respect 
to distance x due to normal force. It is noticed that for both 
VDP and DP, the value of T increases for the region 0 < � ≤ 5 
and then decreases for the remaining region. The trend of 
variation of T is same for both VDP and DP while the 
magnitude values of T are higher for VDP than that of DP. 
 
Thermal Source  
 
Fig.5 shows the variation of normal stress 

11t with respect to 

distance x due to thermal source. It is found that for VDP, the 
value of

11t increase for the region0 < � ≤ 4 and then almost 

constant for the remaining region whereas for DP, it increases 
for the region 0 < � ≤ 2 decreases for the region 2 < � ≤ 4 and 
then increases slowly in the remaining region. Also it is 
noticed that with the magnitude values of

11t are more for VDP 

as compared to that of DP. Fig.6 and 7 depict the variation of 
equilibrated stresses

1 , 
1 with respect to distance x due to 

thermal source. From figs., it is noticed that for VDP, the value 
of 

1 , 
1 decrease for 0 < � ≤ 4and then become almost 

constant for the remaining region whereas for DP, it increases 
for the region 0 < � ≤ 4 and then decreases for the remaining  
region. Also, the magnitude values are higher for DP in 
comparison to VDP except for the region 0 < � ≤ 3. 

Fig.8 shows the variation of temperature distribution T with 
respect to distance xdue to thermalsource. It is noticed that for 
both VDP, and DP, the value of T decreases for the region 0 < 
� ≤ 2and then becomes oscillatory for the remaining region. 
The trend of variation of T is same for both VDP and DP while 
the magnitude values of T are higher for DP that that of VDP. 
 
Conclusion 
 
The behavior of normal stress and equilibrated stresses and 
temperature distribution in an isotropic homogeneous double 
porous viscoelastic medium has been investigated due to 
normal force and thermal source. A state space approach has 
been applied to investigate the problem. The expressions for 
the components of normal stress, equilibrated stress and the 
temperature change are obtained in the frequency domain and 
computed numerically. Numerical simulation is prepared for 
these quantities and simulated results for these quantities are 
depicted graphically to show the effect of viscosity. It is 
observed that viscosity has a significant effect on normal 
stress, equilibrated stresses and temperature distribution. This 
type of study is useful due to its application in geophysics and 
rock mechanics. 
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