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The present paper deals with a boundary value problem in a homogeneous, isotropic double porous
viscoelastic medium subjected to thermomechanical sources. After developing mathematical
formulation, a state space approach has been applied to investigate the problem. As an application of the
approach, normal force and thermal source have been taken to illustrate the utility of the approach. The
expressions for the components of normal stress, equilibrated stress and the temperature change are
obtained in the frequency domain and computed numerically. Numerical simulation is prepared for
these quantities and simulated results for these quantities are depicted graphically for a particular
model. Some particular cases of interest are also deduced from the present investigation.
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INTRODUCTION

The linear theory of viscoelasticity described by the linear
behaviour of both elastic and non-elastic materials, provide a
basis for describing the attenuation of seismic waves. Before
1960 most of the work on linear viscoelastic wave propagation
for which explicit solutions were obtained was essentially for
dimensional and for specific material. Bland (1) has given
account of three dimensional linear viscoelasticity theories. He
concluded that as in perfectly elastic isotropic medium, under
assumption of small displacement, two types of waves can be
propagated in an isotropic viscoelastic medium when body
forces are absent. The Kelvin-Voigt model is one of the
macroscopic mechanical models often used to describe the
viscoelatic behaviour of a material. Iesan and Scalia (2) proved
some theorems in the theory of thermoviscoelasticity. Othman
et al. (3) studied the generalized thermoviscoelastic plane
waves propagation with two relaxation times. Many branches
of engineering including material science, petroleum industry,
chemical engineering, biomechanics and other such fields of
engineering include theories of porous media. Representation
of a fluid saturated porous medium as a single phase material
has been virtually discarded. The material with the pore
spaces such as concrete can be treated easily because all
concrete ingredients have the same motion if the concrete body
is deformed. However the situation is more complicated if the

pores are filled with liquid and in that case the solid and liquid
phases have different motions. Due to these different motions,
the different material properties and the complicated geometry
of pore structures, the mechanical behaviour of a fluid
saturated porous thermoelastic medium becomes very
complicated. So researchers from time to time, have tried to
overcome this difficulty and we see many porous medium
theories in the literature. A brief historical background of these
theories is given by de Boer (4, 5). Biot (6) proposed a general
theory of three-dimensional deformation of fluid saturated
porous solids. Biot theory is based on the assumption of
compressible constituents and till recently, some of his results
have been taken as standard references and basis for
subsequent analysis in acoustic, geophysics and other such
fields. Another interesting theory is given by Bowen (7), de
Beor and Ehlers (8) in which all the constituents of a porous
medium are assumed to be incompressible. The fluid saturated
porous material is modelled as a two phase system composed
of an incompressible solid phase and incompressible fluid
phase, thus meeting the requirement of many problems in
engineering practice, e.g. in soil mechanics. One important
generalization of Biot’s theory of poroelasticity that has been
studied extensively started with the works by Barenblatt et al.
(9), where the double porosity model was first proposed to
express the fluid flow in hydrocarbon reservoirs and aquifers.
The double porosity model represents a new possibility for the
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study of important problems concerning the civil engineering.
It is well-known that, under super-Saturation conditions due to
water of other fluid effects, the so called neutral pressures
generate unbearable stress states on the solid matrix and on the
fracture faces, with severe (Sometimes disastrous) instability
effects like landslides, rock fall or soil fluidization (typical
phenomenon connected with propagation of seismic waves).
Wilson and Aifantis (10) presented the theory of consolidation
with the double porosity. Khaled, Beskos and Aifantis (11)
employed a finite element method to consider the numerical
solutions of the differential equation of the theory of
consolidations with double porosity. Wilson and Aifantis (12)
discussed the propagation of acoustics waves in a fluid
saturated porous medium. The propagation of acoustic waves
in a fluid-saturated porous medium containing a continuously
distributed system of fractures is discussed. The porous
medium is assumed to consist of two degrees of porosity and
the resulting model thus yield three types of longitudinal
waves, one associated with the elastic properties of the matrix
material and one each for the fluids in the pore space and the
fracture space. Beskos and Aifantis (13) presented the theory
of consolidation with double porosity-II and obtained the
analytical solutions to two boundary value problems. Khalili
and Valliappan (14) studied the unified theory of flow and
deformation in double porous media.

Kumar and Kumar (15) investigated the wave propagation at
the boundary surface of elastic and initially stressed
viscothermoelastic diffusion with voids. Sharma and Kumar
(16) studied the propagation of plane waves and fundamental
solution in thermoviscoelatsic medium with voids. Kumar et al
(17) investigated the fundamental solution in micropolar
viscothermoelastic solids with voids. Svanadze(18) Studied the
problem of plane waves and steady vibrations in the theory of
viscoelasticity for Kelvin-Voigt material with double porosity.
Svanadze (19-21) investigated some problems on elastic solids
and thermoelastic solids with double porosity. In recent years
the state space description of linear system has been used
extensively in various areas of engineering, such as the
analysis of control systems. The state space approach offers an
attractive way to avoid the difficulties of the traditional linear
model approach. Bahar and Hetnarski investigated good
number of problems in thermoelasticity by using state space
approach (22-27). Sharma (28) studied the one dimensional
problems in generalized theories of thermoelasticity subjected
to heat source and body forces by using state space approach.
Othman et al (29) established the model of the two-
dimensional generalized thermo-viscoelasticity with two
relaxation times and used normal mode analysis to obtain the
exact expressions for the temperature distribution, thermal
stresses and the displacement components. Ezzat et al (30)
applied state space approach to generalized thermo-
viscoelasticity with two relaxation times. Maghraby et al (31)
used the state space approach to the one dimensional problem
of thermoelasticity with two relaxation times. Youssef and Al-
Lehaibi (32) considered a half-space filled with an elastic
material and used state space approach to obtain the general
solution for any set of boundary conditions. Youssef and
Harby (33) considered an infinite elastic body with a spherical
cavity and constant elastic parameters, and used state space
technique to obtain the general solution for any set of
boundary conditions. Sherief and El-Sayed (34) applied the
state space approach to two-dimensional generalized
micropolar thermoelasticity. Kumar et al (35) studied a

boundary value problem for thermoelastic material with
double porosity using state space approach. Kumar and Vohra
(36) investigated the plane deformation in elastic materials
with double porosity using state space approach.

In the present paper, the state space approach has been used to
solve a boundary value problem for a double porous
viscoelastic medium. The expressions for normal stress,
equilibrated stress and temperature distribution are obtained in
closed form, computed numerically and represented
graphically for normal force and thermal source to show the
effect of viscosity. Some particular cases of interest are also
deduced from the present investigation.

Basis Equations

Following Iesan and Quintanilla (37), the constitutive relations
and field equations for homogeneous double porous
viscoelastic medium  without body forces, extrinsic
equilibrated body forces and heat sources can be written as:

L z/lerré‘ii +2Iueij +b5y¢+d§gﬂ/]—ﬂ5y‘T’ (1
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where A and u are Lame’s constants, p is the mass density;
B =0BA+2u)a; a is the linear thermal expansion; C” is the
specific heat at constant strain, #; are the displacement

components; £, 1is the stress

ij
coefficients of equilibrated inertia; v, is the volume fraction

tensor; k, and k, are

field corresponding to pores and v, is the volume fraction
field corresponding to fissures; ¢ and i are the volume
fraction fields corresponding to v, and v, respectively; o, is

the equilibrated stress corresponding to v;; 7, is the

equilibrated stress corresponding tov, ; k is the coefficient of
thermal conductivity and b, d, b, y, y,, y, are constitutive
coefficients; 5” is the Kronecker delta; A is the Laplacian
operator and T is the temperature change measured from the
absolute temperature T, (7, #0); a superposed dot represents

differentiation with respect to time variable t. Assuming the
viscoelastic nature of the material described by Voigt (38)
model of linear viscoelasticity, we replace the porous
thermoelastic constants

ﬁa /17 ,ua ba d7 ap aza a}a 7/15 7/25 a, 7/5 bl by
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viscoelastic constants.

a., Y, bLS are the

Formulation and solution of the problem: A homogeneous,
isotropic thermoelastic solid with double porosity structure
occupying the region 0 < x < oo, whose state variable depend
only on the space variables distance x and time ¢, has been
considered for which the displacement components

u;(i=1,2,3), volume fraction ¢ and y , and temperature

change T are taken as

u,=u(x,t), @=@(x1),
y=y(x1t), T=T(x1)
(15)

Now, we define the dimensionless quantities as

, O , @ , ko
X==x, u=—u, ¢= o,
cl Cl al
ko’ T c
y'=— , TI'=—, o =—o0,
1
o, T, aw
C t. 16
'=—1, =, 1 =—1, (16)
y
aw A,

A+2 el
¢ = + ,u, wzpC*cl
Yo, K

b

Here @ and ¢, are the constants having dimensions of
frequency and velocity in the medium respectively.

Making use of the dimensionless quantities given in (16) in
equations (11)-(14), we get
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Assuming the time harmonic solution of the equations (17)-
(20) as

(W(x,1),00x,8),w(x,0),T(x,0)) = (i1, 0,7, T)e"  (22)
where @ is the frequency

Equations (17)-(20) with the aid of equation (22) yield

”7511:N15+N2571+N3V771+N47513 (23)
¢.,=Nsi,+ N +N,w,NT, (24)
W, = Nyit, +N,y¢ + N, + N, T, (25)
T,,=N,it,+N b + Ny +N,[T, (26)
where
=—w’, N,=-6, N,==6,, N,=6,
NS—M1M7+M2,
MlS



10962

Rajneesh Kumar et al. State space approach to boundary value probl

Jfor double porous viscoelastic medium

N MMM, N, _MM,+M,
6 9 )
M M,
82—M1M10+M5’ Ny=MNs+M;,

MlS

N, =M N, +M,,

Also
- S -
M1= 55, Mzzi, M3: ! N
o, o, o,
M=% M=% M, =0
tosy T, T
2
M7=i’ Mgzﬁj Mgzé‘l4_ 5
é‘ll 511 é‘ll
M :_515 M ﬁ M :@ M :ﬁ
10 s 11 H 12 s 13 s
é‘11 520 é‘20 520
1
M14:5—, Ms=1-M M
20

State —Space Formulation: Choosing a state variable
displacement # , volume fraction ¢ and Y , temperature

change T in the x-direction, the equations can be written in
the matrix form as

dV(x,w)

= A(o)V (x,w), 27)
dx

and the values of A(@), V (x,w) are given in the appendix.
The formal solution of system (27) can be written in the form

V(x,0) = exp[ A(0)x]V(0,0), (28)

and the value of V' (0, @) is given in the appendix.

We shall use the well-known Cayley-Hamilton theorem to find
the form of the matrixexp[ 4(w)x]. The characteristic

equation of the matrix A(w) can be written as
A+DA +D,2+D A +D, =0, (29)
Where

Dl:_NI_N6_N11_NIG_NZNS_N3N9_N4N137

Q :NlNé +N1Nl1+]\]1]\]16+]\]6]\]11+]\]6N16_N7]\710_N8]\714+
N Ng=NoMs=NoNoNg +NNeNy + N NN N NN 6~
NNN o+ NNN =N NN =N NN+ N NN —
NNNs=NNMN; NN N,

Dy ==NNiNig + Ny NigNig = NNV + NN Ny = NN N +
NNN = NN Ny + NNV s+ NNipN s =Ny NN =
NN N5+ NN Ny T NN Ny Ny = NV NN Ny —
NoNNoN; s + NNGNoINsy + NNeNo Ny s = NN NoIVy =

NstNl 1]\]16"']\’3]\]5]\]10]\]16 +N2N5N12N]5 _N2N7N12N]3 +
NoNGN; Ny =N Ns NNy + N NN N3 = N NN V5 —
NNsN s + Ny NsN Ny = NgNgN Ny + NN NN,

D, = NN;(N, Ny~ NN, )+ NN, (NN~ NigNi )+

. (30)
NNy (NyoVis—NyNy)

Equation (29) is biquartic in A’ yield four roots say,
/11, ﬂz, ﬂa and /14. Now, the Taylor series expansion for
matrix exponential in equation (28) is given by

[A(w)x]"}
n! '

exp[A(w)x] = Zf_o{ 31)

Using Cayley-Hamilton theorem, this infinite series can be
truncated as

expl A(0)x] = a,l +a,A+a,A* +a, A’ (32)

where a,, @, 4,, a; are parameters depending on X and
@. According to Cayley-Hamilton theorem the characteristic
roots — A, =4, =4, —A, of the matrix A must satisfy
equation (32). Therefore, we get

exp[-A,x] = ay] — a A +a,A” —a A,
exp[-A,x]1= a,I — a, A, + a,A," —ad,’,
exp[-Ax]= a,d — ady + a, A" — az Ay,

3

exp[-A,x]= a,] — a A, + a,A,° — a2, (33)

Solving the above system of equations, we obtain the value of
parameters d,, d,, d,, d; and these values are given in

appendix.
Therefore, we have

exp[ A(w)x] = L(x,w) , (34)

where L(x, ) is a 8x8 matrix with the components

ly=a,+a,N,, [l,=aR,, [l;=aR,, [,=aR;,,
Ly =aRs, L, =ay,+a,Ng, Lly=a,N,, L,=a,Ny,
Liy=a;Ry, Ly=a,Ny,, Ly=a,+a,N,, L,=a,Ny,
ly=aR;, l,=a,Ny, ly=a,Ny, [l,=a,+a,Ng,
(35)

in which
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R =N,Ng+ NN, + NNy,
R, =N,N; + N;N,; + N,N;s,
R, =N,N; + N,N,, + N,N,
R; = N\N;, Ry = N\N,, Ry = NN,

Rewriting the equation (28) with the aid of equation (34) yield,

Vix,o)=L(x,0)V(0,w). (36)
Therefore, we obtain
u Ly by Ly Ly||4
@ _ Ly Ly by bLy||4
_|= . (37)
4 Ly Ly Ly Lyl 4
T Ly Iy Ly L4,

Boundary Conditions: A homogenous isotopic thermoelastic
solid with double porosity structure occupying the region

0<x<o0 is considered. The bounding planex=0 is

subjected to a normal force and a thermal source.
Mathematically these can be written as,

(i) t,, = —F, exp[ —iwt], (38)
(i) o, =—F exp[ —imt], (39)
(iii) r, = —F, exp[ —iot], (40)
(iv) T = F, exp[ —iot], (41)

where F, and F, are the magnitude of the force and constant
temperature applied on the boundary.

Substituting the values of wu, @, v, T, t,, o, and 7,

from equations (8), (9), (10), and (37) in the equations (38)-
(41), with the aid of equations (16) and (22), we obtain

Q1 Qz Q3 Q4 Al B FI
Qs Q6 Q7 Qs Az - E

= . 42)
Q Qu Qu Q|4 —F
Qi Qu Qi Qi |4 12
The values of O, O, wevvvervvmeennene , Q)¢ are given in the

appendix.

Solving (42) for A, 4,, 4;, A,

resulting values in equation (37) yield the value of normal
stress, equilibrated stress and temperature change.

and substituting the

P

I I
tu:(SlFl'*'SzF .

r —ii
+S3F+S4F4)€ t,
43)
r r r | D
01=(55F1+S6F2+S7F3+S8F4)e "

(44)

T r r r,
Tl=(S9F1+S10F2+S11F3+S12?4)e_m}ta
(45)
r L L, T,
T=(l41Fl+l42F2+l43F3+144?4)e_lm- (46)

Particular Cases

Case I: If F, =0in equations (43)-(46), we obtain the

corresponding expression for normal force.
Case II: 1If F,=0 in equations (43)-(46), we get the
corresponding expression for thermal source.

NUMARICAL RESULTS AND DISCUSSION

The material chosen for the purpose of numerical computation
is copper, whose physical data is given by Sherief and Saleh
(39) as

A=7.76x10"Nm>,
1=3.86x10"" Nm™,
k=3.86x10°Ns"'K,
T, =0.293x10°K,

C*=0.3831x10°m*s 2K,

®=1x10"s",

a=178x10"K™", ¢=0.1s, p:8.954><103Kgm’3,
a, =1.96x10"Nm™, a,=1.86x10""Nm>,
7=0.19x10" N,

7,=0.16x10°Nm™,
d=0.49x10"Nm™,
7,=0219%x10° Nm K,
b=0.4x10"Nm2,
a,=1.65x10"" Nm >,

b =0.12x10" N,
k, =0.1456x10""> Nms”,

k, =0.1546 x 10~ Nm 252

The software Matlab has been used to determine the values
of normal stress and equilibrated stresses and temperature
distribution. The variation of these values with respect to
distance x are shown in figures (1)-(8), respectively. In all
these figures, the curves for double porous viscoelastic
medium and double porous thermoelastic medium are
represented by VDP and DP respectively.

Fig. 1.Variation of normal stress ¢, with respect to
distance x . (Normal force)
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24 —

- 12

0.8

Fig. 2. Variation of equilibrated stress o, with respect to

distance X . (Normal force) Fig. 5. Variation of normal stress ¢,, with respect to distance
x (Thermal source)

ygge
vDP 6
R DP
3 — o7 N
/ AN VDP
/2 DP
| /
7/
- e 4 —
— 7 N / -
P 2 — / \ /
/ \ /
/ \ / —
/ \ / © h
- / \ !
2 —
\ \ \ \ e Te-
0 4 8 12 16 20 -7
X 0
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X
Fig. 3. Variation of equilibrated stress 7, with respect to distance
X . (Normal force) Fig. 6. Variation of equilibrated stress o, with respect to

distance X . (Thermal source)

Fig. 7. Variation of equilibrated stress 7, with respect to distance
Fig. 4. Variation of temperature distribution 7 with respect X . (Thermal source)
to distance X. (Normal force)
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0.012
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Fig. 8. Variation of temperature distribution 7 with respect to
distance X . (Thermal source)

Normal Force: Fig.1 depicts the variation of normal stress ¢;;
with respect to distance x due to normal force. It is found that
for VDP, the value ofy,,increase for the region 0 < x < 4 and
then almost constant for the remaining region whereas for DP,
it increase for the region 0 < x < 2 and then becomes slightly
oscillatory in the remaining region. Also it is noticed that the
magnitude value ofy,,are more for VDP as compared to that

DP. mFig.2 and 3 show the variation of equilibrated stresses
o,, 7, with respect to distance x due to normal force. From

figs., it is noticed that for VDP, the values of o, 7, decrease

for 0 < x < 4 and then become almost constant for the
remaining region, whereas for DP, it shows an oscillatory
nature. Also, the magnitude values are higher for DP in
comparison to VDP except for the region 0 < x < 2. Fig4
depicts the variation of temperature distribution 7" with respect
to distance x due to normal force. It is noticed that for both
VDP and DP, the value of T increases for the region 0 < x <5
and then decreases for the remaining region. The trend of
variation of 7 is same for both VDP and DP while the
magnitude values of T are higher for VDP than that of DP.

Thermal Source

Fig.5 shows the variation of normal stress ¢, with respect to

distance x due to thermal source. It is found that for VDP, the
value of?, increase for the region0 < x < 4 and then almost
constant for the remaining region whereas for DP, it increases
for the region 0 < x < 2 decreases for the region 2 < x <4 and
then increases slowly in the remaining region. Also it is
noticed that with the magnitude values of¢,, are more for VDP
as compared to that of DP. Fig.6 and 7 depict the variation of
equilibrated stresses o, , 7, with respect to distance x due to

thermal source. From figs., it is noticed that for VDP, the value
of o,, r,decrease for 0 < x < 4and then become almost

constant for the remaining region whereas for DP, it increases
for the region 0 < x < 4 and then decreases for the remaining
region. Also, the magnitude values are higher for DP in
comparison to VDP except for the region 0 < x < 3.

Fig.8 shows the variation of temperature distribution 7 with
respect to distance xdue to thermalsource. It is noticed that for
both VDP, and DP, the value of T decreases for the region 0 <
x < 2and then becomes oscillatory for the remaining region.
The trend of variation of 7 is same for both VDP and DP while
the magnitude values of 7T are higher for DP that that of VDP.

Conclusion

The behavior of normal stress and equilibrated stresses and
temperature distribution in an isotropic homogeneous double
porous viscoelastic medium has been investigated due to
normal force and thermal source. A state space approach has
been applied to investigate the problem. The expressions for
the components of normal stress, equilibrated stress and the
temperature change are obtained in the frequency domain and
computed numerically. Numerical simulation is prepared for
these quantities and simulated results for these quantities are
depicted graphically to show the effect of viscosity. It is
observed that viscosity has a significant effect on normal
stress, equilibrated stresses and temperature distribution. This
type of study is useful due to its application in geophysics and
rock mechanics.

APPENDIX
[0 0 0 0 1 0 0 0]
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