

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 11, Issue, 08, pp.11090-11103, August, 2020

RESEARCH ARTICLE

GEOSPATIAL DELINEATION OF ARBOREAL EPIPHYTES IN A GREENBELT CANOPY FORMATION IN PARTS OF RIVERS STATE, NIGERIA

*Nsirim, L. Edwin-Wosu and Michael, C. Ahanonu

Department of Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, Choba, P.M.B. 5323, Port Harcourt

ARTICLE INFO

ABSTRACT

Article History: Received 07th May, 2020 Received in revised form 19th June, 2020 Accepted 14th July, 2020 Published online 30th August, 2020

Key words: Greenbelt canopy, Oleandra Distenta, Drynaria Laurentii, Nephrolepis Pumicicola and Pyrossia Mechowii. Greenbelt canopy plays major role in epiphyte distribution and diversity. This research aimed at assessing the usefulness of geospatial application in the delineation of arboreal epiphyte in greenbelt canopy in parts of Rivers State. A total of 214 tree canopies (mostly of *Azadirachta indica*) were sampled from both the western and the eastern wing of the study sites using three basic ecological tools [the Braun-Blanquet releve and RRED – Analysis methods and Geospatial tool (GPS, Remote Sensing (RS), and ESRI's ARCMAP GIS version 10.4)]. Result had *Oleandra distenta* Kunze and *Platycerium bifurcatum* Schwein f with the highest frequency, density and diversity across most of the sampled plots in both study sites. *Oleandra distenta* recorded highest IVI value and contiguous distribution pattern across all sampled plots. Sampled plot 10 with highest (398.56) species richness, plot 7 with least (18.03) richness in the west and highest (260.67) richness in plot 9, least (33.48) richness in plot 5 of eastern site were recorded. *Drynaria laur entii* (Christ) Heiron had highest density (37.80), abundance (187), and evenness (80.36) in sampled plot 4 in the western wing. This result has shown variant diversity in the epiphytic proliferation based on variant canopies, barks composition and related growth factors.

Citation: Nsirim, L. Edwin-Wosu and Michael, C. Ahanonu 2020. "Geospatial Delineation of Arboreal Epiphytes in a Greenbelt Canopy Formation in parts of Rivers State, Nigeria.", Asian Journal of Science and Techno bgy, 11, (08), 11090-11103

Copyright © 2020, Nsirim, L. Edwin-Wosu and Michael, C. Ahanonu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Spatial distribution is an important characteristic of population and individual made up of immobile organisms and their distribution in space (Leps and Kindlamann, 1987). Some of the common spatial technologies used in the determination of geospatial distribution and management of vegetation includes; Global positioning system (GPS), Remote sensing (RS), Geographic information system (GIS) (Sonti, 2015). Geospatial technology describes the range of modern tools offen used in the geographic mapping and analysis of earth and human societies. The use of geospatial tools/technologies have been adopted for better management of land, understanding the spatial distribution of structure and composition of vegetation system and other natural resources for a sustainable ecosystem production and services (Palaniswami et al., 2011; Plumptre and Davenport, 2017) Geospatial technology has revealed the occurrence and distribution of epiphytes on forest canopy, the relationship between landscape, and spatial prediction of probability of occurrence in the rain forest region (Plumptre and Masozera, 2002). Geospatial tools have also revealed the ecological elegance of epiphytic species on host plant, evaluate land use ecology over a period of time, identify and measure vegetation dynamics and trend. (Sonti, 2015). The geographic information system and remote sensing technology have been used to assess the trend of vegetation canopy density of an area (Sonti, 2015) as well as their vertical distribution (Reyes-Garcia et al., 2008). Greenbelt canopy is the aggregate of gowns comprising all foliage, twigs, branches, epiphytes as well as the air in a stand of vegetation, in a forest (Parker, 1995). Various types of canopies have been identified among which include op en canopy, dispersed clump canopy, thicket canopy and single ponderos a pine / Gambel o ak single stem canopy type (Scott, 2009). Epiphytes are plants that germinate, grow and live by attachment upon another living plant without specific roots and devoid of a stage in the soil (Kromer and Gradstein, 2003). Arboreal epiphytes are known as true or obligate vascular epiphytes because they are non-parasitic to stems, trunk of trees and plant canopy (Erwin, 1988).

*Corresponding author: Nsirim, L. Edwin-Wosu,

Department of Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, Choba, P.M.B. 5323, Port Harcourt.

Though Kromer and Gradstein, (2003) have recorded over 27,600 plant species under 73 families in which 913 genera are epiphytes. Kress (1986) has however noted about 24,000 as vascular plants epiphytic species in nature accounting for about 9% of all plants. They constitute a major part of the global biodiversity (account for about 10% of the total vascular plant diversity) in greenbelt canopy (Kress, 1986). The most striking characteristics of arboreal epiphytes found in tropical rainforest and any flora landscape formation is the change and environmental disturbance as well as high diversity based on greenbelt canopy which gives them access to atmospheric water and minerals; and their sensitivity to climate (Kromer, 2016). Vascular epiphytes are significant not because of the number of space they occupy but because of the biomass they accumulate (Gentry and Dodson 1987, Benzing 1990, Nadkami., 1994, Isaza et al., 2004). The diversity of epiphytes in greenbelt canopy of a tree has been categorized into three major groups viz: vascular epiphytes, Hemi-epiphytes and Non-vascular epiphytes. (Nalini et al., 2001). The most common methods in estimating the diversity of a species in a study site are those related to species richness; (Luis and Raul, 2004). Many works on the spatial distribution of plant species have earlier been documented (Palaniswami 2011, Plumptre and Davenport, 2017). Using a RRED-Analysis, approach the haphazard collection of epiphytic species and a bias impression of species richness which only focuses on the epiphytic species richness and frequency (Wolf et al., 2009). But in this research, the RRED Analysis method will be used to determine the phytosociology of the epiphytic species. Though in the quest of using geospatial tools to determine the spatial distribution of epiphytes, geospatial tool like remote sensing has proven to be a very useful tool for mapping the spatial distribution of plant diversity in tropical forest and solving the practical problems. Therefore the use of geospatial technologies in this present research was aimed at evaluating the relevance of geospatial tool in the assessment of spatial distribution of epiphyte in a greenbelt canopy formation. Thus with the objectives of; evaluating the degree of arboreal epiphyte spatial distribution in the green belt canopy formation of the study site, and determining the qualitative and quantitative ecological elegance and phytosociological indices of the epiphyte.

MATERIALS AND METHODS

Overview description of the Study Area, Location and Site

Rivers State is one of the thirty six States in Nigeria; located between longitudes $6^{\circ} 23^{1}E \& 7^{\circ} 36^{1}E$ and latitude $4^{\circ} 18^{1}N \& 5^{\circ} 45^{1}N$ of the equator (Fig. 1). To the East it is bounded by Imo River and Akwa-Ibom and bounded to the West by Bayelsa State. It is equally bounded to the North by Imo State and Abia State and to the South by the Atlantic Ocean (Edwin-Wosu *et al.*, 2013). This area is associated with an average climatic condition of maximum rain fall pattern and a relative humidity under the influence of latitudinal and seasonal variations but comparatively uniform due to proximity of the ecozone to the Atlantic Ocean (Alagoa, 1999, Kuruk, 2004). The area is characterized by mangrove forest, fresh water, raffia palm vegetation and tropical rainforest (Egwuogu *et al.*, 2016). The soil is often sandy silt or sandy loam well drained with both fresh and salt water and clayey in nature and by topographic variation with some sections underlain by impervious clay pan often leached due to heavy rainfall, thus making it alkaline (salty) and sometimes acidic in nature (Egwuogu *et al.*, 2016). Presently the State consists of twenty three (23) local government areas including Obio / Akpor the study location. Obio / Akpor Local Government Area is located between latitudes $4^{\circ} 45^{1}N$ and $4^{\circ} 65^{1}N$ and longitude $6^{\circ} 50^{1}E$ and $8^{\circ} 00^{1}E$ (Fig. 2) and covers about 260km²; characterized by a tropical monsoon climate of maximum rain fall (Egwuogu *et al.*, 2016). It houses several localities, towns and suburbs, including Choba the study site with the sampled station at the Abuja campus of the University of Port Harcourt (Wikipedia 2017), geo-referenced to latitude 4.9017 and longitude 6.9204 (Google 2017).

Field Sampling

Arboreal epiphyte assessment: A field survey and inventory of arboreal epiphyte was carried out on a greenbelt canopy formation. A total stand of 214 tree (mainly *Azadirachta indica*) canopies were enumerated from the inlet direction of Delta – Abuja campus gate of UNIPORT (Figs. 3a, b). By the eastern location (right wing) of the sampling station with distance coverage of 1560m, 69 of 105 canopy formations were epiphyte bearing trees; while 72 of 109 canopies on the western location (left wing) with distance coverage (1600m) were epiphyte bearing trees. Though a total distance 1560m and 1600m was covered for the eastern and western geographical location of the sampling station respectively, a distance of 1200m on the western part and 1000m on the eastern part respectively was enumerated based on epiphyte bearing canopy trees. This was implemented using three basic ecological tools involving; Braun – Blanquet releve method (1964), RRED-analysis (Shaw and Bergstron, 1997) and Geospatial tool (GPS, RS and ESRI's ARCMAP GIS version 10.4).

Sampling methods: An integrated sampling approach involving the Braun –Blanquet relieve method (1964), and Rapid and Representative Epiphyte Diversity (RRED Analysis) method (Shaw and Bergstron, 1997 and geospatial tools [GPS, Remote Sensing (RS) and Geographic Information System (ESRI'S ARCMAP version 10.4)] were adopted. Individual trees were assessed using single rope tree climbing technique which helps to determine the presence of epiphyte for maximum sampling of the microhabitats of the upper canopy community without creating injuries on the tree. The individual tree coordinates were taken using a handheld GPS (BHnav300 model) to show the geospatial distribution of the trees bearing epiphytes and the non-epiphyte bearing trees. The coordinates were arranged using Microsoff excel and then imported into ESRI'S ARCMAP software in which the geo-referenced map showing the satellite imagery and the spatial distribution of the trees was produced.

Sampling procedure: Adopting the Braun – Blanquet relieve method (1994) and RRED-Analysis (Shaw and Bergstrom, 1997) a total of 11 sampling plots of eastern and western location of the study site, under a belt transect (100m) each was laid on the horizontal distribution pattern. Five sub-sampled units (20m x 3m) each of the transect direction of the sampled plot were laid for sampling. Hence epiphytes prefer trees with larger diameter at breast height (Hazell *et al.*, 1998, Ingerpuu and Vellak, 2007).

The ecological tools were used to determine the abundance of epiphyte based on the tree diameter at breast height (DBH) hence; this will help in determining the various data analysis on the epiphytic distribution.

Data analysis: The data analysis of the epiphytic distribution was based on standard phytosociological indices as exemplified below to determine frequency of distribution, abundance, and density of the representative species of the study site (Supriya and Yadava, 2006; Shukla, 2009 amd Chikkahuchaiah *et al.*, 2016). The species diversity in richness of the sampled sites and diversity among species within a sampled site was estimated using the Margalef (1958) richness index and Shannon-Wiener, (1963) diversity index respectively. The degree of evenness or equitability (Pielou, 1969) index was estimated. The species were described in semi-quantitative Pryor scale terms (Pryor, 1981). The relative density, relative abundance and relative frequency (Misra, 1968) the importance value index (IVI) (Shukla and Chandel, 1980) were estimated. The distribution pattems in line with the "Rule of Thumb" designated as; Regular (< 0.03), Random (0.03 - 0.05) and Contagious (> 0.05) distribution (Curtis and Cottam, 1956). Life form spectrum (Raunkiaer, 1934; Kershaw, 1975; Mueller – Dombois and Ellenberg, 1974) was estimated. The similarity and dissimilarity assessment of eastern and western location of the study site were carried out by enumerating and sorting out into common species and species unique to variation pattern of common species of feach plot using the Sorenson (1948) similarity coefficient index

% Frequency = $\frac{\text{Number of trans ects of in which the species occurred x 100}}{\text{Total number of transect studied}}$

Abundance = <u>Total number of individual occurrence of a species in all transect</u> Total number of transect in which the species occurred

Density = Total number of individuals of a species in all transect x 100 Total number of transect studied 1

Relative frequency = $\frac{\text{Number of occurrence of the individual species x } 100}{\text{Number of occurrence of all the species } 1}$

Relative abundance = $\frac{\text{Abundance occurrence of the species x 100}}{\text{Abundance occurrence of all the species 1}}$

Relative density = $\underline{\text{Number of individual of the species x 100}}$ Number of individual of all the species 1

Importance Value Index = RF + RA + RD

Species diversity index (H') = - $\sum \rho i I \eta \rho i$ Where $\rho i = n_{I/N} (n_I = \text{number of individuals of a species}, N = \text{total number of individuals of all the species})$

Species richness (Margalefindex): $R = \underline{S-1}$ of sampled plots

Log N

Where (S = T otal number of species, N = T otal number of individuals)

Species evenness or Equitability Index (Pielou 1969) is calculated as: E = H'/Log.S

Where H' = diversity index and S = total number of species

The life form classification (Kershaw, 1975; Raunkiaer, 1934; Mueller – Dombois and Ellenberg, 1974) entails:

- Phanerophytes (Trees & Shrubs)
 - Megaphanerophytes >30m in height
 - Mesophanerophytes 8 30m
 - Microphanerophytes 2 8m
 - Nanophanerophytes <2m
- Chamaephytes (buds borne close to the ground)
- Hemi-cryptophytes (buds borne at or in the soil surface)
- Cryptophytes (buds borne below ground or below water)
 - Geophytes (with rhizomes, bulbs or underground tuber)
 - Helophytes (perennating organ in soil or mud below water level)
 - Hydrophytes (water plants, perennating buds from submerged rhizomes)
- Therophytes (no perennating buds, annual or ephermeral plants)

• Epiphytes (air plants, no root in the soil)

Similarity index using Sorenson model is calculated as: $C = \frac{2W}{A+B}$

Dissimilarity is calculated as: 1 - C.

Where W = number of common species

RESULTS

The report of the study has recorded variation in structural life habit across the species (Table 1) as well as in the phytosociological indices of enumerated prevalent species among the six species namely *Platycerium bifurcatum, Oleandra distenta, Phymatodes scolopendria, Pyrrosia mechowii, Nephrolepis pumicicola,* and *Drynaria laurentii* in the western (Table 2) and five species namely *Phymatodes scolopendria, Pyrrosia mechowii, Pyrrosia mechowii, Platycerium bifurcatum, Oleandra distenta,* and *Nephrolepis pumicicola* in the eastern sampled plots (Table 3) of the study location sites; while the geospatial distribution of epiphytes among tree and non-tree bearing epiphytes was represented in Figure 4.

Frequency of occurrence: On the Western location sampled plots (Sp) as shown in Table 2, clarified that *Platycerium bifurcatum* has the highest frequency (100%) in sp10 and a least frequency (40%) in sp11. *Oleandra distenta* recorded the highest frequency (100%) in sp5, 8, 10 and the least frequency (20%) in sp7. *Phymatodes s colopendria* recorded the highest frequency (100%) in sp10 and the least frequency (40) in sp5, while *Pyrrosia mechowii* had a least frequency of 20% in sp1, 2, 3, 8, 9 & 10 respectively and highest frequency (80%) in sp11.

Table 1: Herbaceous epiphytes identified in the study site

Species	Family	Comm on name	Life form
Platycerium bifurcatum Schwein F.	Poly podiac eae	Elkhorn fer n	Herbaceous epiphy te
Oleandra distenta Kunze	Davalliaceae	Cree per fern	Herbaceous epiphy te
Phymatodes scolopendria (Burn F.) Ching	Polypodiac eae	Monarch fern	Herbaceous epiphy te
Pyrrosia mechowii (Heiron) Alston	Polypodiac eae	Pyrossia fern	Herbaceous epiphy te
Nephrolepis pumicicola Ballard	Davalliaceae	Macho fern	Herbaceous epiphy te
Drynaria laurentii (Christ) Heiron	Polypodiaceae	Basket fern	Herbaceous epiphyte

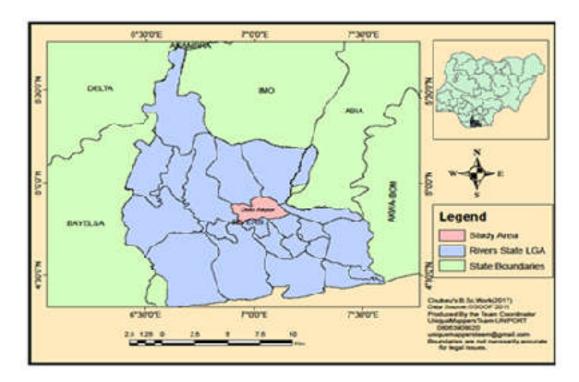


Fig. 1: Rivers State study area, displaying Obio / Akpor LGA study location

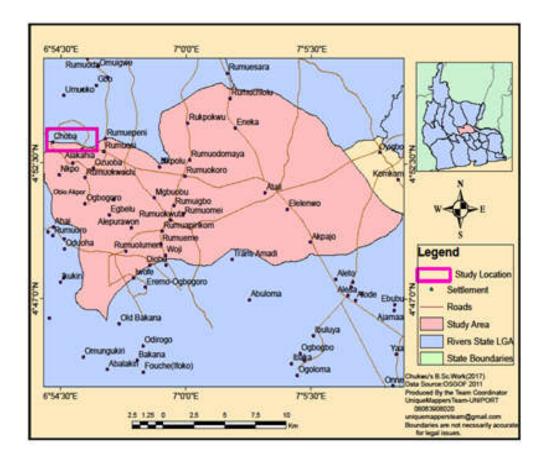


Fig. 2: Obio / Akpor study location indicating Choba, study site

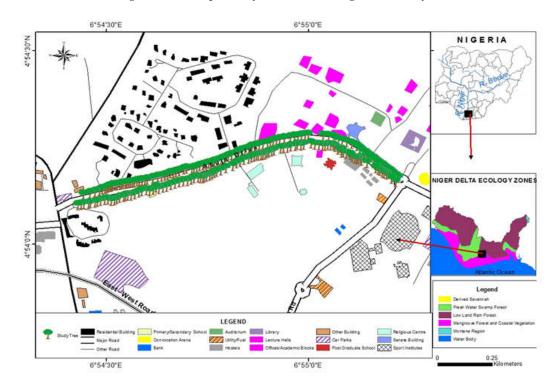


Figure 3a: GIS representation of sample location of the study trees of the canopyformation in UNIPORT environment (from Delta-Abuja gate to Ofrima roundabout)

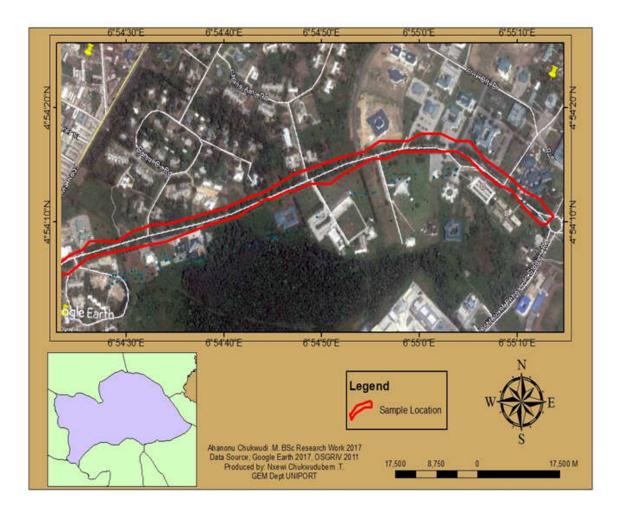


Figure 3b: Satellite imagery of sample location the study trees of the canopy formation in UNIPORT environment (from Delta-Abuja gate to Ofrima roundabout)

Fig. 4: Geospatial distribution of epiphyte and non-epiphyte bearing green canopyformation of the study site

 Table 2. Phytosociological means of herbaceous epiphytes identified in the Western study site

Western location sampled plot 1													
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Platycerium bifurcatum Schwein F.	80	3.5	8	40	6.54	27.78	74.32	24.77		139.10	231.81	0.04	++++
Olean dra distenta Kunze	40	44	17.60	20	82.24	61.11	163.35	54.45	46.33	361.51	602.52	1.10	++
Phymatodes s colopendria (Burm F.) Ching	60	5	3	30	9.35	10.42	49.77	16.59		84.46	140.77	0.08	+++
Pyrrosia mechowii (Heiron) Alston	20	1	0.20	10	1.87	0.69	12.56	4.19		13.80	23.00	0.05	+
TOTAL	200	53.50	28.8	100	100	100	300	100		598.87	998.10	1.27	
Western location sampled plot 2													
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Phymatodes scolopendria (Burm F.) Ching	60	17.3	10.40	23.08	26.49	25.74	75.31	25.10		141.35	202.22	0.29	+++
Platycerium bifurcatum Schwein F.	80	13.5	10.80	30.77	20.67	26.73	78.17	26.06	5637	147.98	211.70	1.17	++++
Olean dra distenta Kun ze	80	20.5	16.40	30.77	31.39	40.59	102.75	34.25		206.71	295.72	0.26	++++
Nephrolepis pumicicola Ballard	20	13	2.60	7.69	19.91	6.44	34.04	1135		52.15	74.61	0.65	+
Pyrro sia mechowii (Hieron) Akton	20	1	0.20	7.69	1.53	0.50	9.72	3.24		9.60	13.73	0.05	+
TOTAL	260	65.3	40.40	100	99.99	100	299.99	100		557.79	797.98	2.42	
Western lo cation sampled p lot 3	200	055	10.10	100	,,,,,,	100	277.57	100		551.15	171.90	2.12	
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Phymatodes s clop endria (Burm F.) Ching	60	36.70	22	23.08	30.66	35.14	88.88	29.63	marc	173.21	247.80	0.61	+++
Platycerium bifurcatum Schwein F.	80	5	4	30.77	4.18	6.39	41.34	13.78	88.13	66.82	95.60	0.01	++++
Olean dra distenta Kun ze	60	28	16.80	23.08	23.39	26.84	73.31	24.44	00.15	136.74	195.62	0.00	+++
	20	20	0.20	7.69	0.84	0.32		24.44	+	8.38	11.99	0.47	+
Pyrrosia mechowii (Hieron) Alston Nephrolepis pumicicola Ballard	40	49	19.60	15.39	40.94	31.31	8.85 87.64	2.95		8.38	243.58	1.23	++
		-											++
TOTAL	260	119.7	62.60	100.01	100.01	100	300.02	100.01		555.41	794.59	2.42	
Western lo cation sampled p lot 4	0.(77	- T .		0/P P	0 (D)				~ 7	@ 1774	a 15		
Species	%F	A	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Phymatodes s clopendria (Burm F.) Ching	60	10.30	6.20	25	3.09	7.26	35.35	11.78		54.74	78.31	0.17	+++
Platycerium bifurcatum Schwein F.	80	4.50	3.60	33.33	1.35	4.22	38.90	12.97	120.74	61.85	88.48	0.06	++++
Olean dra distenta Kun ze	60	29.70	17.80	25	8.91	20.84	54.75	1825		95.18	136.17	0.50	+++
Drynaria laurentii (Christ) Heiron	20	187	37.80	8.33	56.07	43.79	108.19	36.06		220.08	314.85	9.35	+
Nephrolepis pumicicola Ballard	20	102	20.40	8.33	30.59	23.89	62.81	20.94		112.93	161.56	5.10	+
TOTAL	240	333.5	85.40	99.99	100.01	100	300	100		544.78	779.37	15.18	
Western location sampled plot 5													
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Phymatodes sclopendria (Burm F.) Ching	40	72.50	29	15.39	43.85	33.26	92.50	30.79		181.87	303.12	1.81	++
Platycerium bifurcatum Schwein F.	80	11.25	9	30.77	7.20	10.32	48.29	16.08	143.67	8131	135.52	0.14	++++
Olean dra distenta Kun ze	100	27.60	27.60	38.46	16.69	31.65	86.80	28.89		168.26	280.43	0.28	+++++
Nephrolepis pumicicola Ballard	40	54	21.60	15.39	32.66	24.77	72.82	24.24		135.61	226.02	1.35	++
TOTAL	260	165.35	87.20	100.01	100.40	100	300.41	100		567.05	945.09	3.58	
Western location sampled plot 6									•	•			
Speaes	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Platycerium bifurcatum Schwen F.	60	4367	2620	3333	5746	5746	148.25	4942		321.85	674.74	0.73	+++
Phymatodes sclopendria (Burm F.) Ching	60	2.00	1.20	3333	2.63	2.63	3859	1286	9350	6122	128.34	0.03	+++
Oleandra distenta Kunze	60	3033	1820	3333	3991	3991	113.15	37.72		23237	487.15	0.51	+++
TOTAL	180	76	4560	9999	100	100	299.99	100		615.44	1290.23	1.27	
Western location sampled plot /													
Speaes	%F	A	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Platycerium bifurcatum Schwein F.	80	725	5.80	6667	20	6024	147.09	4930		318.83	668.41	0.09	++++
Oleandra distenta Kunze	20	16	3.20	1667	44.14	3333	94.14	3138	1803	185.81	389.54	0.80	+
Nephrolepis pumicico la Ballaid	20	13	0.60	1667	3586	6.25	58./8	1959		104.00	218.03	0.65	+
TOTAL	120	3625	9.60	100.1	100	100	300.01	100.27		608.64	1275.98	1.54	
Western boation sampled plot 8										- var.	E Sali		Harrist
Speaes	%F	A	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH	SdE	A/F	Remark
Platycerium bifurcatum Schwein F.	80	6.25	5	30:/7	4.46	5.56	40:79	1360		65:70	9399	80.0	++++
Oleandra distenta Kunze	100	61	61	3846	4349	67.78	149.75	4991	127.33	325.76	466.04	0.61	+++++
Pyrrosia mediowii (Heron) Alston	20	8	1.60	7.69	5.70	1.78	15.17	5.06		1792	2564	0.40	+
Phymatodessclopendria (Burm F.)Ching	40	47	1880	1539	3351	2089	69:79	2326		128.68	184.09	1.18	++
Nephrolep is pumicico la Ballard	20	16	3.60	7.69	1283	4	2452	8.17		3407	48.74	0.90	+
TOTAL	260	140.25	90	100	9999	100	300	100		57213	81850	3.17	

Continue

Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Phymatodes sclopendria (Burm F.) Ching	40	38	1520	18.18	3108	2542	7468	2489		139.89	200.13	0.95	++
Platycerium bifurcatum Schwein F.	80	1025	8.20	3636	8.39	13.71	5846	1949	84.12	103.29	147.77	0.13	++++
Pyrrosia mechowii (Hieron) Alston	20	3	0.60	9.09	2.45	1.00	1254	4.18		13.77	19.70	0.15	+
Oleandra distenta Kunze	60	54	3240	2727	44.17	54.18	125.62	4188		263.68	377.23	0.90	+++
Nephrolepis pumicico la Ballard	20	17	3.40	9.09	1391	5.69	2869	9.56		4182	5983	0.85	+
TOTAL	220	122.25	5980	9999	100	100	299.99	100		562.45	804.66	2.98	
Western b cation sampled p lot 10													
Species	%F	Α	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Phymatodes scolopendria (BurmF.) Ching	100	102.60	102.60	27.78	3150	3667	9595	3198		190.18	272.07	1.03	+++++
Platycerium bifurca tum Schwein F.	100	2460	2460	27.78	7.55	8.79	44.12	14.71	398.56	7256	103.81	0.25	+++++
Oleandra distenta Kunze	100	123	123	27.78	37.77	4396	109.51	3650		223.34	319.52	1.23	+++++
Nephrolepis pumicico la Ballard	40	7250	29	11.11	2226	1037	43.74	1458		71.77	102.68	1.81	++
Pyrrosia mednowii (Hieron) Alston	20	3	0.60	5.56	0.92	0.21	6.69	2.23		5.52	7.90	0.15	+
TOTAL	360	325.7	279.80	100.01	100	100	300.01	100		563.37	805.98	3.47	
Western b cation sampled p lot 11													
Species	%F	Α	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Platycerum bifurcatum Schwein F.	40	12	4.80	2500	1250	8.70	4620	1540		7691	15285	0.30	++
Oleandra distenta Kunze	60	7067	4240	3750	7362	7681	187.93	6264	113.63	427.35	895.91	1.18	+++
Pyrrosia mechowii (Hieron) Alston	60	1333	8	3750	1388	1449	6587	2196		1 19.80	251.15	0.22	+++
TOTAL	160	96	5520	100	100	100	300	100		624.06	1299.91	1./0	1

%F = Frequency, A=Abundance, D=Density, %RF=Relative Frequency, %RD=Relative Density, %RA=Relative Abundance, IVI=Important Value Index, mR=Margalef Richness, SdH' = Species diversity Richness, SdE= Species diversity Evenness, A/F = Distribution pattern.

Table 3. Phytosociological means	of harbacous aninhytas	s identified in the Eastern study site
1 abic 5. 1 hytosociological means	or nervacious cupinyies	s fuchtificu in the Eastern study site

				Easter	n lo cation sam	pled plot l							
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Platycerium bifurcatum Schwein F.	40	1.00	0.40	33.33	2.86	2.00	38.19	12.73		60.42	126.67	0.03	++
Olean dra distenta Kun ze	60	32.00	1920	50.00	91.43	96.00	237.43	79.14	39.83	564.02	1182.43	0.53	+++
Pyrrosia mechowii (Heiron) Alston	20	2.00	0.40	16.67	5.71	2.00	24.38	8.13		33.82	70.90	0.10	+
TOTAL	120	35.00	20	100	100	100	300	100		658.26	1380.00	0.66	(
					n lo cation sam								
Species	%F	A	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Platycerium bifurcatum Schwein F.	60	3.67	2.20	30.00	3.22	3.77	36.99	12.33		58.00	96.67	0.06	+++
Phymatodes scolopendria (Burm F.) Ching	80	32.00	25.60	40.00	28.03	43.84	11.87	37.29	95.67	12.75	21.25	0.40	++++
Olean dra distenta Kun ze	40	74.50	29.80	20.00	65.25	51.03	136.28	45.43		290.88	484.80	1.86	++
Nep hrolepis pumicicola Ballard	20	4.00	0.80	10.00	3.50	1.37	14.87	4.96		17.43	29.05	0.20	+
TOTAL	200	114.17	58.40	100	100	100.01	300.01	100.01		379.06	631.77	2.52	l l
				Easter	n location sam	pled plot 3							
Species	%F	A	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Nephrolepis pumicicola Ballard	20	10.00	2.00	9.09	9.62	2.76	21.47	7.16		28.59	40.90	0.50	+
Platycerium bifurcatum Schwein F.	60	11.00	6.60	27.27	10.58	9.09	46.94	15.65	102.43	78.46	112.25	0.18	+++
Phymatodes sclopendria (Burm F.) Ching	20	1.00	0.20	9.09	0.96	0.28	10.33	3.44		10.48	14.99	0.05	+
Olean dra distenta Kun ze	80	77.50	62.00	3636	74.52	85.40	196.28	65.43		450.05	643.85	0.97	++++
Pyrrosia mechowii (Heiron) Akton	40	4.90	1.80	18.18	4.33	2.48	24.99	8.33		34.93	49.97	0.11	++
TOTAL	220	104	72.60	99.99	100.01	100.01	300.01	100.01		602.51	861.96	1.81	
					n lo cation sam								
Species	%F	A	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Remark
Platycerium bifurcatum Schwein F.	60	1133	6.80	27.27	11.46	12.19	50.92	16.97		86.92	144.87	0.19	+++
Pyrrosia mechowii (Heiron) Akton	60	3.00	1.80	27.27	3.04	3.23	33.54	11.18	91.33	51.17	85.288	0.05	+++
Olean dra distenta Kun ze	80	50.50	40.40	3636	51.10	72.40	159.86	53.29		352.29	587.15	0.63	++++
Phymatodes sclopendria (Burm F.) Ching	20	34.00	6.80	9.09	34.40	12.19	55.68	18.56		23.55	39.25	1.70	+
TOTAL	220	98.83	55.80	99.99	100	100.01	300	100		513.93	856.55	2.57	

Continue

					n lo cation sam	1 1	-	-				-	-
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Rema
Pyrrosia mechowii (Heiron) Akton	60	2.67	1.60	27.27	5.78	6.56	39.61	13.20		63.29	90.54	0.05	++-
Platycerium bifurcatum Schwein F.	40	3.00	1.20	18.18	6.50	4.92	29.60	9.87	33.48	43.55	62.30	0.08	++
Olean dra distenta Kun ze	80	22.50	18.00	3636	48.73	73.77	158.86	52.96		349.65	500.22	0.28	+++
Nephrolepis pumicicola Ballard	20	17.00	3.40	9.09	36.82	13.93	59.84	19.95		106.34	152.13	0.85	+
Phymatodes s colopendria (Burm F.) Ching	20	1.00	0.20	9.09	2.17	0.82	12.08	4.03		13.07	18.70	0.05	+
TOTAL	220	46.17	24.40	99.99	100	100	299.99	100.01		575.90	823.89	1.31	
				Easter	n lo cation sam	pled plot6							
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Rema
Platycerium bifurcatum Schwein F.	20	20.00	0.20	14.28	40.32	1.08	55.68	18.56		97.20	203.77	1.08	+
Olean dra distenta Kun ze	100	15.60	15.60	71.43	31.45	83.87	186.75	62.26	36.90	424.16	889.22	0.16	+++-
Pyrrosia mechowii (Heiron) Alston	20	14.00	2.80	14.28	28.22	15.05	57.53	19.18		101.25	212.26	0.70	+
TOTAL	140	49.60	18.60	99.99	99.99	100	299.96	100		622.61	130525	1.94	
TOTIL	110	17100	10100		n lo cation sam		2777770	100		022:01	1000000	1.01	
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Rema
Platycerium bifurcatum Schwein F.	60	6.67	4.00	33.33	3.28	6.27	42.88	14.29		69.99	100.13	0.11	+++
Nephrolepis pumicicola Ballard	20	94.00	18.00	11.11	46.15	29.47	86.73	28.91	88.70	60.30	86.27	4.70	+
Olean dra distenta Kun ze	60	51.00	30.60	33.33	25.04	47.96	106.33	35.45		215.49	308.28	0.85	+++
Phymatodes s clop endria (Burm F.) Ching	20	51.00	10.20	11.11	25.04	15.99	52.14	17.38		89.53	128.08	2.55	+
Pyrrosia mechowii (Heiron) Alston	20	1.00	0.20	11.11	0.49	0.31	11.91	3.97		12.81	1833	0.05	+
TOTAL	180	203.67	63	99.99	100	100	299.99	100		448.12	641.09	8.26	
TOTIL	100	200107	00		n lo cation sam	2.0.0	277777	100			011105	0.20	
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Rema
Platycerium bifurcatum Schwein F.	40	3.50	1.40	28.57	9.05	6.48	44.10	14.70	more	72.52	152.03	0.09	++
Olean dra distenta Kun ze	60	30.67	18.40	42.86	79.31	85.19	207.36	69.12	43.19	480.40	1007.12	0.51	+++
Phymatodes s clopendria (Burm F.) Ching	40	4.50	1.80	28.57	11.64	8.33	48.54	16.18	15.17	81.84	171.57	0.11	++
TOTAL	140	38.67	21.60	100	100	100	300	10.18		634.76	1330.72	0.71	
TOTAL	110	50.07	21.00		n lo cation sam		500	100		051.70	1550.72	0.71	
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Rema
Olean dra distenta Kun ze	80	181.00	144.80	50.00	75.64	92.00	216.64	72.21	more	506.01	843.35	2.26	+++-
Platycerium bifurcatum Schwein F.	40	1.50	0.60	25.00	0.62	0.38	26.00	8.67	260.67	36.79	61.32	0.04	++
Pyrrosia mechowii (Heiron) Alston	20	2.00	0.40	12.50	0.83	0.25	13.58	4.53	200.07	15.39	25.65	0.10	+
Phymatodes s clopendria (Burm F.) Ching	20	58.00	11.60	12.50	23.92	7.37	43.79	14.60	+	71.88	119.80	2.90	+
TOTAL	160	242.50	157.40	12.50	100.01	100	300.01	100.01	-	630.07	1050.12	5.30	1
TOTAL	100	242.30	137.40		lo cation same		500.01	100.01		030.07	1050.12	5.50	
Species	%F	А	D	%RF	%RA	%RD	IVI	RIVI	mSR	SdH'	SdE	A/F	Rema
Platycerium bifurcatum Schwein F.	60	3.33	2	37.50	70KA 1.41	3.85	42.76	14.25	marc	69.74	116.23	0.06	+++
Olean dra distenta Kun ze	20	215.00	43.00	12.50	91.17	82.69	186.36	62.12	85.00	423.10	705.17	10.75	+++
Pvrro sia mechowii (Heiron) Alston	40	14.50	5.80	25.00	6.15	11.15	42.30	14.10	05.00	68.79	114.65	0;36	++
Phymatodes s colopendria (Burm F.) Ching	40	3.00	1.20	25.00	1.27	2.31	28.58	9.53		41.61	69.35	0,36	++
TOTAL	160	235.83	52.00	100	1.27	100	300	9.55	+	603.24	1005.40	11.25	
IUIAL	100	233.63	52.00	200	200	2.0.0	500	100		003.24	1003.40	1123	
Species	%F	А	D	Eastern %RH	lo cation samp %R			VI RI	VI m	SR SdH	, SdE	A/F	Rem
Olean dra distenta Kun ze	%F							9.00 59		403.2		0.26	+++
Phymatodes s colopendria (Burm F.) Ching	40							9.00 59		.70 82.25		0.26	
	-						-						++
Platycerium bifurcatum Schwein F.	40								39	46.58		0.09	++
Nephrolepis pumicicola Ballard	20	12.0	0 2.40) 10.00) 23.8	36 7.2		.09 13	.70	66.3			

%F = Frequency, A=Abundance, D=Density, %RF=Relative Frequency, %RD=Relative Density, %RA=Relative Abundance, IVI=Important Value Index, mR=Margale f Richness, SdH'=Species diversity Richness, SdE=Species diversity Evenness, A/F=Distribution pattern. *Nephrolepis pumicicola* recorded least frequency (20%) in sp2, 4, 7, 8 & 9 respectively with a similar least frequency (20%) by *Drynaria laurentii* in sp4. On the eastern location as shown in Table 3, clarified that the highest frequency (60%) in sp7 and sp10 respectively and least frequency (20%) in sp6 were recorded by *P. bifurcatum. Oleandra distenta* had a highest frequency (60%) with *P. mechowii* recording the least frequency (20%) in sp1. Also in sp6, *O. distenta* has recorded a highest frequency (100%) while a least frequency (20%) was recorded for *P. mechowii and P. bifurcatum* which also had the highest frequency (60%) with *O. distenta* and least frequency (20%) among *P. mechowii, P. scolopendria* and *N. pumicicola* in sp7. In sp8 and 9, *O. distenta* recorded highest frequency (60% & 80%) respectively while *P. bifurcatum* (40%), *P. mechowii* (20%) and *P. scolopendria* (40% and 20%) were least in frequency distribution. A highest frequency (80%) for *Phymatodes scolopendria* and least frequency (20%) of *N. pumicicola* in sp1. Nest frequency (20%) of *O. distenta*, which also had highest frequency (20%) of *N. pumicicola* in sp11 were recorded.

Abundance: *Platycerium bifurcatum* recorded the highest abundance (43.67) in sp6 and least abundance (4.50) in sp4 among sampled plots while *O. distenta* had the highest abundance (123) in sp10. *Phymatodes scolopendria* recorded the highest abundance (72.50) in sp5 and least (2.00) in sp6 while *N. pumicicola* had a highest abundance (49) in sp3, with *D. laurentii* recording a similar highest abundance (187) in sp4. *Pyrrosia mechowii* recorded least abundance (1) in sp1, 2, and 3 respectively (Table 2). On the eastern location *P. bifurcatum* has the highest abundance (20) in sp6 and least abundance of (1) in sp1 while *O. distenta* recorded the highest abundance (215) in sp10 among sampled plots. *Pyrrosia mechowii* had the least abundance (1) in sp7 with *P. scolopendria* (1) in sp3 while *N. pumicicola* recorded a highest abundance (94) in sp7. More data are outlined in Table 3.

Density: The data outlined in T able 2, outlined that *Platycerium bifurcatum* recorded the highest density (26.20) in sp7 and a least density of 4.80 in sp11, while *O. distenta* similarly recorded highest density (123.00) in sp10. *Phymatodes scolopendria* recorded highest density (29) in sp5 and a least density (1.20) in sp6. *Pyrrosia mechowii* also had least density (0.20) in sampling plots 1, 2, 3, respectively, with *N. pumicicola* recording a similar least density (0.60) in sp7. *Drynaria laurentii* recorded a highest density of 37.80 in sp4. The eastern *P. bifurcatum* recorded least density (0.20) in sp6 while *O. distenta* had the highest density (144.80) in sp10. *Pyrrosia mechowii* recorded least density (0.20) in sp7, with *P. scolopendria* (0.20) in sp3, & 5 respectively and *N. pumicicola* (0.80) in sp2, (Table 3).

Importance Value Index (IVI): *Platycerium bifurcatum* recorded highest IVI of 148.25 in sp6 and least IVI (46.20) in sp11 respectively in western location (Table 2), while *O. distenta* recorded the highest prevalent IVI (187.93) in sp11. *Phymatodes scolopendria* recorded highest IVI (92.50) in sp5 and least IVI (35.35) in sp4 with *P. mechowii* least IVI (6.69) in sp10. *Nephrolepis pumicicola* recorded a least IVI (58.78) in sp7 and *D. laurentii* a highest IVI (108.19) in sp4. In the eastern location (Table 3) *P. bifurcatum* recorded least IVI value (31.18) in the sp11 while *O. distenta* recorded the highest prevalent IVI value (237.43) in sp1. *Pyrrosia mechowii* recorded least IVI value (11.91) in sp7, *P. scolopendria* least IVI value (10.33) in sp3 and *N. pumicicola* least IVI (4.96) in sp3.

Sampled plot species richness: The Margalef richness among the 11 sampled plots of western location has recorded highest species richness (398.56) in sp10 while sampled plot 7 has the least species richness of 18.03, (Table 2). The eastern location sampled plots had highest species richness (260.67) in sp9 while the least species richness (33.48) was recorded in sp5 (Table 3).

Species diversity: The western location has recorded (Table 2), that a least diversity (76.91) of *P. bifurcatum* in sp11 while *O. distenta* had the highest diversity (427.35) in sp11. *Phymatodes scolopendria* recorded the highest diversity (181.87) in sp5 and a least diversity (61.22) in sp6. *Pyrrosia mechowii* recorded the least diversity (5.52) in sp10, and while *N. pumicicola* had recorded a least diversity (104.00) in sp7, *D. laurentii* highest diversity (220.08) in sp4. *Platycerium bifurcatum* in the eastern location recorded highest diversity (97.20) in sp6 and least diversity (46.58) in sp11, while *O. distenta* was recorded to have the highest diversity (564.02) in sp1. *Pyrrosia mechowii* had a least diversity (12.81) in sp7 and *P. scolopendria* also least diversity (10.48) in sp3 as outlined in Table 3.

Species evenness: Result from the western location as outlined in Table 2, indicated *P. bifurcatum* with the highest evenness (674.74) in sp6 and least evenness (152.85) in sp11. *Oleandra distenta* recorded the highest evenness (895.91) in sp11, while *P. scolopendria* with also highest evenness (303.12) in sp5 had recorded a least evenness (61.22) in sp6. *Pyrrosia mechowii* recorded least evenness (7.90) in sp10, with *N. pumicicola* also recording least evenness (218.03) in sp7 while *D. laurentii* recorded a least evenness of 314.85 in sp4. In the eastern location as outlined in Table 3, *P. bifurcatum* has recorded least evenness (77.63) in sp11; *O. distenta* recorded the highest evenness (1182.43) in sp1, while *P. mechowii* had recorded the least evenness (18.33) in sp7, with *P. scolopendria* (14.99) in sp3.

Structural life form and similarity index: Generally, in all sampled coordinates of the Western and Eastern plots, the structural life habit were observed to be herbaceous epiphytes (Table 1), while the Sorenson index has recorded more similarity (90.91%) than dissimilarity (-89.91%) of species composition between the western and eastern coordinates.

Distribution pattern (Ratio: A/F): In the western location *P. bifurcatum* recorded a regular distribution in sp1 and a contiguous distribution in sp2, 3, 4, 5, 6, 7, 8, 9, 10 & 11 respectively, while *O. distenta* was contiguous in distribution in all the sampled plots (1-11). *Phymatodes scolopendria* recorded regular distribution in sp6 and contiguous distribution in sp1, 2, 3, 4, 5, 8, 9 & 10 respectively; *Pyrossia mechowii* recorded regular distribution in sp1, 2 & 3 and a contiguous distribution in sp8, 9, 10 & 11

respectively; with *N. pumicicola* in contiguous distribution in sp2, 3, 4, 5, 7, 8, 9 & 10 respectively while *Drynaria laurentii* recorded a contiguous distribution in sp4 (Table 2). On the eastern location *P. bifurcatum* was regularly distributed in sp1, 2 & 9 and contiguously distributed in sp3, 4, 5, 6, 7, 8, 10 & 11 respectively; while *O. distenta* recorded contiguous distribution in all sampled plots (1-11). *Phymatodes scolopendria* recorded regular distribution in sp3 & 5 respectively and a contiguous distribution in sp2, 4, 7, 8, 9, 10 & 11 respectively; *Pyrossia mechowii* recorded a regular distribution in sp4, 5 & 7 and a contiguous distribution in sp1, 3, 6, 9 & 10 respectively while *N. pumicicola* recorded a contiguous distribution in sp2, 3, 5, 7, & 11 respectively (Table 3).

DISCUSSION

Following the use of geospatial technology in the delineation of arboreal epiphyte of greenbelt canopy formation in parts of Rivers State, the study has recorded some degree of phytosociological dynamics among epiphytes in the western and eastern coordinates of the study location. In all the phytosociological index of study, it was observed that Oleandra distenta tend to have the highest value in all the quantitative ecological values in most of the sampled plots in both the western and eastern coordinates of the study site. Pyrossia mechowii had the least value in the western site while Phymatodes scolopendria recorded the least value in the eastern site of the study location. This possibly might be as a result of the variations among host species in relation to several assertions on factors including: bark morphology, chemical composition and some other morphology that helps them in water retention which enhances the development and distribution of epiphytes (Benzing, 1990; Hietz and Briones 1994; Higgins 2004; Reyes-Garcia et al., 2008; Zhang et al., 2015). It was observed that bigger trees such as Azadirachta indica (Neem plant) could offer large surface area and several microhabitats that could support larger numbers of epiphytes. This corroborates the assertion by Annaseslvam and Parthsarathy (2001); Flores-Palacios and Garcia-Franco (2006) who has observed the impact of variant bark morphology of host plant on epiphyte proliferation. It has also been noted that branch inclination, position and diameter as well as the regorousity of tree bark enhanced the ability of epiphytic species to adhere to substrate, resulting to a great in fluence on the growth and development of epiphyte along the host vertical axis (Bogh, 1992; Neider et al., 2000). Similar study on the epiphytic spatial distribution depends on their relationship between their particular requirements [biotic factors (availability of host, dispersers and pollinators) and abiotic factors (temperature)] for gemination, survival, growth, and reproduction, because the height of host plant tends to determine the abundance of epiphytes (Nieder et al., 2000, Zotz and Vollrath 2003; Benavides et al., 2011). It was noted that *Platy cerium bifurcatum* and *Oleandra distenta* were the most frequent species of the sampled plots seen on the western location and the eastern location respectively basically due to the height and availability of light which penetrates the simple leaf arrangement of Azadirachata indica (host plant). This corroborates Reyes - Garcia, et al. (2008) and Benavides et al. (2011) who in similar study had recorded epiphytic abundance based on the growth factors and height of host plant. By the Margalef (1958) index of sampled plot richness the western coordinate of the study site with six epiphytic species (P. scolopendria, P. bifurcatum, O. distenta, N. pumicicola, P. mechowii and D. laurentii) with variant sampled richness had the highest species richness (389.56) in sampled plot ten & least (18.03) species richness in sampled plot seven. The eastern coordinate with five epiphytic species (P. mechowii, P. bifurcatum, O. distenta, N. pumicicola and P. scolopendria) with variant sampled richness had the highest species richness (260.67) in plot nine & least (33.48) species richness in sampled plot five. Drynaria laurentii was found only on one sampled plot (plot 4) throughout the canopy formation of the western coordinate, this possibly might be as a result of the host plant factor in fluencing the patterns of colonization as recorded by its highest abundance, density, Importance Value Index, species diversity and species evenness. This reaffirms the earlier assertion by Nalini (2001) in light of host plant bark texture and pH influence.

Although the epiphytic species was found only on one sampled plot in the western coordinate of the study site, this according to D'Amato et al. (2009) might have been due to structural veget ation changes as similarly observed in many regions of the world. This might have attributed to the alteration in the greenbelt canopy thus creating a narrow ecological niche of species specialist, which influences the epiphytic biomass and frequency, and this according to Vellend et al. (2006), may lead to local extinction of the species if the changes persist for a long period of time. There were more epiphytes on the western coordinate unlike the opposite eastern coordinate (with less species) of the study site, which invariably means that the horizontal distribution might be a result of the tree types, bark formation, host species mineral component and some disturbances like tree logging, which if not controlled shall increase the rate of epiphytic loss (Barthlott et al., 2001; Vandunne, 2002; FAO, 2010). According to Forsyth and Miyata, (1984); Kim, et al. (1997) flaky barks has also been associated with increased water retention and has helped in the increase d growth of epiphyte. It was noticed that out of the 214 plants enumerated, 11 tree stands of *Poiciana regia* belonging to the family - Fabaceae and 1 stand (*Gmelina arborea*) of the family- Verbenaceae on eastern parts of the coordinate had smo oth barks and no form of epiphytic growth was seen on them. This possibly could also confirm the rationale for greater epiphytic proliferation in the Western site of the study location than the eastern site.

The distribution pattem of species among the sampled plots in the Western and Eastern coordinates based on the Curtis and Cottam (1956) ratio of abundance to frequency (A/F) had indicated that the species were contiguous and random, non-regular in distribution within and among sampled plots of the study location. The Western coordinate had *Oleandra distenta* with the highest distribution (16.16%) contiguous, while *Drynaria laurentii* had the least (1.52%) contiguous distribution pattems. Also it was observed that *Pyrossia mechowii* had the highest pattern (5.55%) in random distribution while *Platycerium bifurcatum* and *Phymatodes scolopendria* had least (1.52%) random distribution patterns. In the Eastern coordinate *Oleandra distenta* had the highest distribution (20%) in contiguous pattern, while *P. mechowii* and *N. pumicicola* had the least (9.10%) contiguous patterns respectively. In random distribution pattern *P. bifurcatum* and *P. mechowii* had the highest (5.50%) respectively, while *P. scolopendria* had least (3.64%) random distribution. Such variation in distribution pattern of species between the two coordinates

could be attributed to differences in host species combination and morphological characteristics. The epiphytes distribution according to (Barthlott et al., 2001, Kromer and Gradstein 2003, Benavides et al., 2006, Cascante marin et al., 2006, Woods and Dewalt, 2012) are quite in fluenced by the host characteristics which include the host species combination, the stand age and their dispersal limitations. Generally, in all sampled coordinates of the Western and Eastern sampled plots, the structural life form were observed to herbaceous epiphytes in corroboration to the life form classification of Kershaw (1975), Raunkiaer (1934) and Mueller - Dombois and Ellenberg (1974). The Sorenson index (1948) has shown the similarity and dissimilarity of species composition between the eastern and western coordinates. A more similarity value (90.91%) was observed showing that they are more similar than dissimilar (-89.91%) in species composition. Studies has shown that canopy density and branching plays major role in the distribution of epiphyte because the leaf characteristics of host plant plays a major role in determining the light quantity filtering down from the upper canopy branching of the tree (Whitmore, 1989). This also conforms to the morphological attributes of the Azadirachta indica (host plant), which possibly must have impacted on the growth of the epiphytes enumerated on the sampled coordinates (eastern and western wing) of the study location. Based on the research it has been observed that the western coordinate was mostly of dispersed clumps canopy which allowed more of epiphyte species while the eastern coordinate was mostly made of 2 different canopy formations including open canopy (mostly made o funderstory plant cover, predominated with herbs and grasses) and dispersed clumps canopy. Similarly, Thorsten and Gradstein (2016) in the study of arboreal epiphytes using RRED-analysis has noticed that most epiphytes mostly occur on the zone three and four of their host plants, as been exemplified with *Phymatodes scolopendria* as a result of branch formation of the canopy.

Conclusion

The use geospatial tool and RRED analysis in the delineation of arboreal epiphyte has shown it relevance in the assessment of spatial distribution of epiphyte in a greenbelt canopy formation. Two different species of plant (11 *Poiciana regia* stands and 1 *Gmelina arborea* stand) of the 214 tree stands sampled, had no epiphytes on them. This was due to their smooth bark which gave no room for development of epiphytes. Though the epiphytes were mostly seen on a common host but there was diversity in the epiphytic proliferation. This might imply that the epiphytic development does not solely depend on the host species but on some related growth factors.

Acknowledgm ents

The authors deeply wish to thank colleagues and laboratory staffs that help ed with fieldwork and particularly Dr. Mark Ogoro of the GIS Unit, Geography and Environmental Department, University of Port Harcourt, Nigeria.

REFERENCES

- Alagoa, E.J. 1999. The land and people of Rivers State, Central Niger Delta. On yema Research publication, Port Harcourt, Rivers State Nigeria.
- Annaselvam J. and Parthasarathy N. 2001. Diversity and Distribution of Herbaceous Vascular Epiphytes in a Tropical Evergreen Forest at Varagalai a Western Ghats, India. *Biodivers. Conserve.* 10:317-329.
- Barthlott, W.V, Schmit-Neuerburg, J.N. and Engwald, S. 2001. Diversity and abundance of vas cular epiphytes: A comparison of secondary vegetation and primary montane rainforest in the Venezuelan Andes. *Pl.Ecol*.152:145-156.
- Benavides, A., Wolf, J.H.D. and Duivenvoorden, J.F. 2006. Recovery and succession of epiphytes in upper Amazonian fallows. *Journal of Tropical Ecology* 152:145-156.
- Benavides, A.M., Vasco, A., Duque, A.J. and Duivenvoorden, J.F. 2011. Association of vascular epiphytes with landscape units and phorophytes in humid lowland forest of Colombian Amazonia. *J.Trop Ecol* 27:223-237.
- Benzing, D.H. 1990. Vascular epiphytes. Cambridge University Press. Cambridge.
- Bogh A. 1992. Composition and distribution of the vascular epiphyte flora of an Ecuadorian Montane Rainforest. *Selbyana* 13: 25-34.
- Braun-Blanquet J. 1964. Pflanzensoziologie, Grundzüge der Vegetationskunde. (3. Auflage). Springer Verlag, Wien, 865 pages.
- Cascante-marin, A., Wolf, J.H.D., Oostermeijer, G.B., Den-Nijs, J.C.M, Sanahuja O and Duran-Apuy, A. 2006. Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. *Basic and Applied Ecology* 7:520-532
- Chikkahuchaiah, S., Rayasamudra, K.S. and Badenahally, C.N. (2016). Diversity and composition of riparian vegetation across forest and agrosystem landscapes of river Cauvery, Southem India. *Tropical Ecology*. 57(2):343-354.
- Curtis, J.T. and Cottam, G. 1956. Plant Ecology Work Book: Laboratory field reference manual. Bugess Publishing Co., Minnesota. 193 pp.
- Edwin-Wosu, N.L. and Edu, E.A.B. 2013. Eco-Taxonomic assessment of plant species regeneration status in a post-remediated crude oil impacted site in parts of Ibibio-1-oil field in Ikot-Ada Udo, Ikot-Abasi local government of Akwalbom State, Nigeria. *Asian Journal of Plant Science and Research*. 3(3):14-23.
- Egwuogu, C.C., Okeke, H.U., Emenike, H.I. and Abayomi, T.A. 2016. Rainwater Quality Assessment in Obio/Akpor L.G.A of Rivers State Nigeria. *International Journal of Science and Technology*.**5** (8):118 125.
- Erwin, T.L. 1988. The tropical forest canopy: The heart of biotic diversity. *In Biodiversity* (E. O. Wilson Ed). PP. 123 129. Stanford University Press, Stanford, California.
- Flores-Palacios, A. and Garcia Franco, J.G. 2006. The relationship between tree size and epiphyte species richness: Testing four different hypotheses. J. *Biogeogr* 33: 323-330.

Food and Agriculture Organization. 2010. Developing effective forest policy. FAO forest paper, pp.161.

Forsyth, A. and Miyata, K. (1984). *Tropical nature*. Charles Scribner's sons: New York, NY.

- Gentry, A.H. and Dodson, C.H. 1987. Diversity of biogeography of neotropical vascular epiphytes. Ann. Missouri Botanical Gardens.74:205-233.
- Hazell, P., Kellner, O., Rydin, H. and Gustaysson, L. 1998. Presence of four epiphytic bryophytes in relation to density of *populus* tremula and other stand characteristics. Forest Ecology and Management 107:147-158.
- Hietz, P. and Briones, O. 1998. Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. *Oecologia*. 114: 305-316.
- Higgins, W.E. 2004. Vascular epiphytes. In Lowman: MD, Rinker HB. Editors. Forest canopies, London (UK): Elsevier Academic press
- Http://En.M.Wikipedia.Org/Wiki/Obio-Akpor (24/08/2017).
- Ingerpuu, N. and Vellak, K. 2007. Growth of *Neckerapennata*, and epiphytic moss of old-growth forests. *The Bryologist* 110(2): 309-318.
- Isaza, C., Betancur, J. and Estevez-varon, J.V. 2004. Diversity and distribution of bromehads in the montane forest in the Eastern Corellera of the Colombian Andes. *Selbyana* 25(1): 162-137.
- Kershaw, K.A. 1975. *Quantitative and Dynamic Plant Ecology*. 2nd Edition, Edward Arnold, London pp 305
- Kim, G.M., Siegel, A.Y. and Shandro, J.R. 1997. *Holding on for dear life: The Effects of Bark Substrate on Epiphyte Load and Composition*. Dartmouth studies in Tropical Ecology. pp. 43-50.
- Kress, W.J. 1986. The systematic distribution of vascular epiphytes: An update. Selbyana 9:2-22.
- Kromer, T. and Gradstein, S.R. 2003. Species richness of vascular epiphytes in two primary forests and fallows in Andes. *Selbyana* 24:190-195.
- Kuruk, P. 2004. Customary water loss and practices: Nigeria.
- Leps, J. and kindlamann, P. 1987. Models of the development of spatial pattern of an even-aged plant population over time. *Ecol. Modeling*. 39:45 59.
- Luis, J.H. and Raul, P. 2004. Mapping the spatial distribution of plant diversity indices in a tropical forest using multi-spectral satellite image classification and field measurements. *Biodiversity and conservation* 13:2599-2621.
- Margalef, R. 1958. Information theory in ecology. General Science, 3:36-71.
- Misra, R. 1968. Ecology Workbook. Oxford & IBH Publishing Co. Pvt Ltd., New Delhi. 244 pp.
- Mueller-Dombois, D. and Ellenberg, H. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York.
- Nadkami, N.M. 1994. Diversity of Species and Interactions in the Upper Tree Canopy of Forest Ecosystems'. Amer. 34:70-78.
- Nalini, M., Nadkarni, M., Merwin, C. and Jurgen, N. 2001. Forest canopies, Plant diversity. Encyclopedia of Biodiversity 3.
- Nieder, J.S., Engwald, M.K. and Barthlott, W. 2000. Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni Crane plot) of southern Venezuela. *Biotropica* 32(3): 385-396.
- Palaniswami, C., Gopalasundaram, P. and Bhaskaram, A. 2011. Application of GPS and in sugar cane Agriculture. *Sugar Tech* 13(4): 360-365.
- Parker, G.G. 1995. Structure and Microclimate of Forest Canopies. In: Forest Canopies (M.D.
- Pielou, E.C. 1969. An introduction to mathematical ecology. John Wiley and Sons, New York. 102p.
- Plumptre, A.J. and Masozera, M. 2002. *Biodiversity surveys of the Hyungwe Forest Reserve in S. W. Rwanda*.WCS working paper no. 19.
- Plumtre, A.J. and Davenport, T.R.B. 2017. The biodiversity of the Alberyine Rift: Biological Conservation 134(2): 178-194.
- Pryor, L.D. 1981. Australian endangered species. *Eucalyptus Australian National Parks and Wildlife Services*. Special Publication 5 Canberra 139 pp.
- Raunkiaer, C. 1934. The life form of plants and Statistical Plant Geography. Clarendon Press, Oxford. 632p.
- Reyes Garcia, C., Griffiths, H., Rincon, E. and Huante, P. 2008. Niche differentiation in tank and atmospheric epiphytic bromeliads of a seasonally dry forest. *Biotropic* 40 20: 168-175.
- Scott, R.A. 2009. Tree canopy types constrain plant distribution in Ponderosa Pin Gambel oak forest, Arizona. Res. Note RMRS – RN – 39. Forest Collins, Co: U.S. Department of Agriculture. Forest Service, Rocky Mountain Research Station. 7P.
- Shannon, C.E. and Wienner, W. 1963. The mathematical theory of communications. Urbana, Illinois: University of Illinois Press.
- Shaw, J.D. and Begstrom, D.M. 1997. A rapid assessment technique of vascular epiphyte diversity at forest and regional levels. *Selbyana* 18:195-199.
- Shukka, R.P. 2009. Patterns of plant species diversity across Terai landscape in north eastern Uttar Pradesh, India. *Tropical Ecology*. 50 1: 111-123.
- Shukla, S.R. and Chandel, S.P. 1980. Plant Ecology.4thEdn. S. Chandel and Co. Ramnagar, New Delhi 110055.197pp.
- Sonti, S.H. 2015. Application of geographic in formation system GIS in forest management. J. Geogr National Disaster 5:145.
- Sorenson, T.A. 1948. A method of establishing groups of equal amplitude in plant sociology of species content. K. Danake Vidensk Biol. Skr.5:1-34.
- Supriya, L.D. and Yadava, P.S. 2006. Floristic diversity assessment and vegetation analysis of tropical semievergreen forest of Manipur, north east India. *Tropical Ecology*, 471:89-98.
- Thorsten, K. and Gradstein, S.R. 2016. Vascular Epiphytes. Biodiversity Sampling Protocols, pp 26-36.
- Vandunne, H.T.F. 2002. Effects of the spatial distribution of trees, nonspecific epiphytes and geomorphology on the distribution of epiphytic bromehads in secondary montane forest Cordillera Central, Colombia. *Trop. Ecol.* 18: 193-213.
- Vellend, M., Verheyen, K., Jacquemyn, H., Kolb, A., Peterken, G. and Hermy, M. 2006. Extinction debt of forest plants persist for more than a century following habitat fragmentation. *Ecology*, 87: 542-548
- Whitmore, T.C. 1989. Tropical Rainforest of the Far East. Oxford University Press, New York.

- Wolf, J.H.D., Gradstein, S.R. and Naakarni, N.M. 2009. A protocol for sampling vascular epiphyte richness and abundance. *Journal of tropical Ecology* 25:107-121.
- Woods, C.L. and Dewalt, S.J. 2012. The conservation value of secondary forests for vascular epiphytes in Panama. *Biotropica* 45:119-127
- Www.Distances from.Com/Ng/Uniport.Choba-Po/Latlonghistory /3231600.Aspx? IS HISTORY = 1 & Location ID = 3231600 24/08/2017.
- Zhang, S.B., Dai, Y., Hao, G.Y., Li, J.W., Fu, X.W. and Zhang, J.L. 2015. Differentiation in water-related traits in terrestrial and epiphytic cymbidium species. *Frontiers in plant science* 6: 260-269.
- Zotz, G. and Vollrath, B. 20030. The epiphyte vegetation of the palm socratea exorrhiza correlations with tree size, tree age and bryophyte cover. *J Trop Ecol.*, 19:18-90.
