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 ARTICLE INFO    ABSTRACT 
 

 

In this paper, we present a brief overview on bipolar-valued fuzzy sets which is an extension of fuzzy 
set theory. A new operations defined over the bipolar-valued fuzzy sets some properties of this 
operations are discussed and also we introduce the definition of bipolar-valued fuzzy relations various 
properties like symmetry, reflexivity, transitivity etc. are studied. 
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INTRODUCTION 
 

 

In 1965, Zadeh [6] introduce the notion of a fuzzy subsets of a set, fuzzy sets are a kind of useful mathematical structure to 
represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research indifferent 
domains, there have been a number of generalization of this fundamental concept such as intuitionist fuzzy set, interval-valued 
fuzzy set, vague sets, soft set etc. Lee K. M in 2000 introduced the notion of bipolar-valued fuzzy set are an extension of fuzzy 
sets whose membership degree range is enlarged from the interval [0,1] to[−1,1]. Ashram Bormann salid [2] in 2009 introduced 
bipolar-valued fuzzy ���/���-algebra. K. Young Ja Lee [4] in 2009 introduce bipolar-valued fuzzy sub algebra, bipolar-valued 
fuzzy ideal and some related properties are discussed. 
 

1 Preliminaries 
 

1.1 Definition  
 

Let � be a nonempty set. A fuzzy set � is drawn from � is defined s � = ���, ��(�)�: � ∈ ��, where ��: � ⟶ [0,1] is the 

membership function of the fuzzy set �. Fuzzy set is a collection of object with graded membership that is having degree of 
membership. 
 

Example: The whole concept can be illustrated with this example let’s talk about people and “youth fullness “In this case the set � 
is the set of people. A fuzzy subset young is also defined, which answers the question “To what degree is person � young? To each 
person in the universe discourse we have to assign a degree of membership in the fuzzy subset young. The easiest way to do this is 
with membership function based on the person’s age  
 

YOUNG (�) = �

1,				��		���(�) ≤ 20
����

��
, ��		20 < � ≤ 30

0,								��				� > 30				

�  
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1.2 Definition [6] 
 
A fuzzy set is empty if and only if its membership function is identically zero on �. 
 
1.3 Definition [6] 
 
Two fuzzy sets � and � are equal, written as � = �,  if and only if  ��(�) = 	��(�) for all � in �. ( In the of sequel, instead of 
writing ��(�) = ��(�) for all � in �, we shall write more simply �� = ��	.	) 
 
1.4 Definition [6] 
 
The complement of a fuzzy set � is denoted by �′ and is defined by		��′ = 1 − ��.        
     
1.5 Definition [6] 
 
The union of two fuzzy sets � and � with respective membership functions ��(�) and ��(�) is a fuzzy set �, written as � = � ∪ 	�, 
whose membership function is related to those of � and � by ��(�) = 	���[��(�), ��(�)], �	 ∈ 	�        
                             
1.6 Example 
 
Let � = {1,2,3,4,5} and let � = {(1,0.3), (2,0.2), (3,0.2), (4,0.8), (5,0.6)} and � = {(1,0.2), (2,0.5), (3,0.9), (4,0.7), (5,0.8)}. 
Then  
 
��∪� = {(1,0.3), (2,0.5), (3,0.9), (4,0.8), (5,0.8)}. 
 
Note ∪ has the associative property, that is, � ∪ (	� ∪ �) = (	�	 ∪ 	�) ∪ �. 
 
1.7 Theorem [6] 
 
The union of � and � is the smallest fuzzy set containing both � and �. More precisely, if � is any fuzzy set which contains both � 
and �, then it also contains the union of � and �. 
 
Proof: To show that this note is equivalent to (1.3) . We note that �  as defined by (1.3)    contains both � and �. Since � ⊃ 	� 
implies ��	 ≧ 	 ��. Since � ⊃ � implies ��	 ≧ 	 ��. Therefore, we have ���[��(�), ��(�)] ≧ ��(�)  for every �	 ∈ 	�	and 
���[��(�), ��(�)] ≧ ��(�)	for every  �	 ∈ 	�. Furthermore, if � is any fuzzy set containing both � and �, then  ��	 ≧ 	 �� and 
��	 ≧ 	 ��. Hence ��	 ≧ 	 ��	∪	�. But ��	∪	� = ��. Therefore ��	(�) ≧ 	���[��(�), ��(�)] = ��(�) for every �	 ∈ 	� which implies 
that ��	 ≦ 	 ��.	Hence � ⊂ 	�. Therefore � is the smallest fuzzy set containing both � and �. That is, the union of � and � is the 
smallest fuzzy set containing both � and �. 
 
1.8 Definition [6] 
 
The intersection of  two fuzzy sets � and � with respective membership functions ��(�) and ��(�) is a fuzzy set �, written as 
� = � ∩ �, whose membership function is related to those of  � and � by  ��(�) = 	���[��(�), ��(�)]	, ���	���		�	 ∈ 	�					  
 
1.9 Example 
 
Let � = {1,2,3,4,5} and let � = {(1,0.1), (2,0), (3,0.3), (4,0.5), (5,0.6)} and � = {(1,0.3), (2,0.5), (3,0.7), (4,0.8), (5,0.4)}. Then  

��∩� = {(1,0.1), (2,0), (3,0.3), (4,0.5), (5,0.4)}. 
 
Note: ∩ has the associative property, that is, � ∩ (	� ∩ �) = (	�	 ∩ 	�) ∩ �.  
 
The intersection of � and � is the largest fuzzy set which is contained in both � and �.  
 
1.10 Definition [6] 
 
The algebraic product of � and � is denoted by �� and is defined in terms of the membership functions of � and � by the relation  
																																																											��� = ��	��.               
                                                                     
Clearly, �� ⊂ �	⋂�.      
  
1.11 Definition [6]     
                                                                                               
The algebraic sum of � and � is denoted by � + � and is defined by  
																																																									���� = �� + ��                                                                  
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provided the sum �� + �� is less than or equal to unity. Thus, unlike the algebraic product, the algebraic sum is meaningful only 
when the condition ��(�) + �� ≦ 1 is satisfied for all �. 
 
1.12 Definition [6] 
 
The absolute difference of � and � is denoted by |� − �| and is defined by  �|���| = |�� − ��|. Note that in case of ordinary sets 
|� − �| reduces to the relative complement of �⋂� in �⋃�.   
 
1.13 Definition [6] 
 
The composition of two fuzzy relations � and � is denoted by � ∘ � and is defined as a fuzzy relation in � whose membership 
function is related to those of � and � by  
 
��∘�(�, �) = ���

�
���[��(�, �), ��(�, �)]. 

 
Note that the operation of composition has the associative property � ∘ (� ∘ �) = (� ∘ �) ∘ �. 
 
1.14 Definition [6] 
 
Let � be a mapping from � to a space �. Let � be a fuzzy set in � with membership function ��(�). The inverse mapping of ��� 
induces a fuzzy set � in � whose membership function is defined by ��(�) = ��(�), � ∈ � for all � in � which are mapped by � 
into �. 
 
1.15 Definition [6] 
 
A fuzzy set � is convex if and only if the sets Γ� defined by  
 
																																																						Γ� = {�	|	��(�) ≧ �}  
 
are convex for all	� in the interval (0,1]. 
 
Alternate definition of fuzzy convex: A fuzzy set � is convex if and only if  
 

																															��(��� + (1 − �)��) ≧ ������(��), ��(��)�,             
                             
for all ��, �� in � and all � in [0,1]. 
 
1.16 Results [6] 
 
To show that the equivalence between the above definitions. 
 
Proof: If � is convex in the sense of the first definition and � = ��(��) ≦ ��(��), then �� ∈ Γ� and ��� + (1 − �)�� ∈ Γ� by the 
convexity of Γ�. Hence  
 

��(��� + (1 − �)��) ≧ � = ��(��) = ������(��), ��(��)�. 
 
Conversely, if � is convex in the sense of second definition and � = ��(��),	then Γ� may be regarded as the set of all points �� for 
which ��(��) ≧ ��(��). In virtue of (1.24), every point of the form ��� + (1 − �)��, 0 ≦ � ≦ 1, is also in Γ� and hence Γ� is 
convex set. 
 
1.17 Theorem 
 
If � and �are convex, so is their intersection. 
 
Proof: Let � = � ∩ �. Then 
 

��(��� + (1 − �)��) = ������(��� + (1 − �)��), ��(��� + (1 − �)��)�				    (1.25) 
 
 Since � and �are convex, we have 
 

		��(��� + (1 − �)��) ≧ ������(��), ��(��)�  
 

		��(��� + (1 − �)��) ≧ ������(��), ��(��)�. 
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Now (1.25) implies that 
 

��(��� + (1 − �)��) ≧ ��� �������(��), ��(��)�,������(��), ��(��)�� 

 

	≧ ��� �������(��), ��(��)�,������(��), ��(��)��. 

 

			≧ ������(��), ��(��)�. 
 
Hence intersection of two fuzzy convex is fuzzy convex. 
 

2 MAIN RESULTS 
 

2.1 Definition 
 

Let � be a non-empty set. An bipolar-valued fuzzy set � in � is an object having the form � = ���, ��
�(�), ��

�(�)� �⁄ ∈ ��. where 

��
�: � ⟶ [0,1] and ��

�: � ⟶ [−1,0] are mappings. The positive membership degree ��
�(�) denoted the satisfaction degree of an 

element � to the property corresponding to a bipolar-valued fuzzy set � = ���, ��
�(�), ��

�(�)� �⁄ ∈ ��, and the negative 

membership degree ��
�(�) denotes the satisfaction degree of � to some implicit counter-property of � = ���, ��

�(�), ��
�(�)� �⁄ ∈

��. 
 
2.2 Example 
 
Let � = {(�, 0.6, −0.4), (�, 0.8, −0.3), (�, 0.5, −0.5)} is a bipolar-valued fuzzy set of � = {�, �, �}.  
 
In the canonical representation, it is possible for elements � to be ��

�(�) ≠ 0 and ��
�(�) ≠ 0 when the membership function of the 

property overlaps that of its counter-property over some portion of the domain. The reduced representation of a bipolar-valued 

fuzzy set � on the domain � has the following shape � = ���, ��
�(�)� �⁄ ∈ ��, ��

�: � ⟶ [−1,1] The membership degree ��
�(�) 

for the reduced representation can be derived from its canonical representation as follows 
 

  ��
�(�) = �

��
�(�)			��			��

�(�) = 0

��
�(�)			��			��

�(�) = 0

����
�(�), ��

�(�)�			��ℎ�����ℎ

.� Here ����
�(�), ��

�(�)� is an aggregation function to merge pair of positive and  

negative membership values into a value. Such aggregation functions ����
�(�), ��

�(�)� can be defined in various ways. 
 
2.3 Definition 
 
Two bipolar-valued fuzzy set � = (�, ��

�, ��
�) and � = (�, ��

�, ��
�) of a set � are equal, written as � = �, if and only if ��(�) =

��(�) and ��(�) = ��(�), for all � ∈ �. 
 
2.4 Definition 

 
Let � = (�, ��

�, ��
�) be a bipolar-valued fuzzy set of a set �. The complement of bipolar-valued fuzzy set � is denoted by �� =

���, 1 − ��(�), −1 − ��(�)� �⁄ ∈ ��. 
 

2.5 Definition 
 

Let � = (�, ��
�, ��

�) and � = (�, ��
�, ��

�) be two bipolar-valued fuzzy sets of a set �. Then � contained in � (or � is a subset of �) 
if and only if ��(�) ≤ ��(�) and ��(�) ≥ ��(�), for all � ∈ �. In symbols � ⊂ � ⟺ ��(�) ≤ ��(�) and ��(�) ≥
��(�), ∀� ∈ �. 
 
2.6 Definition 
 

Let � = (�, ��
�, ��

�) and � = (�, ��
�, ��

�) be two bipolar-valued fuzzy sets of a set �. Then union of � and � is defined as  

�⋃� = ���,max���(�), ��(�)� ,min���(�), ��(�)�� �⁄ ∈ ��.  The union of two bipolar-valued fuzzy set � and � are defined 

as follows �⋃� = ���, ��⋃�(�)� �⁄ ∈ ��,  

where ��⋃�(�) = ���⋃�
� (�), ��⋃�

� (�)� ⟹ ��⋃�
� (�) = max���

�(�), ��
�(�)� , ��⋃�

� (�) = min���
�(�), ��

�(�)� , ∀� ∈ �. 

 

2.7 Definition 
 

Let � = (��, ��) and � = (��, ��) be two bipolar-valued fuzzy set of a set �. Then 

�⋂� = {��,min���(�), ��(�)� ,max���(�), ��(�)� �⁄ ∈ ��. 
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2.8 Theorem 
 
The union of � and � is the smallest bipolar-valued fuzzy set containing both � and �. More precisely if � is any bipolar-valued 
fuzzy set which contains both � and � then it also contains the union of � and �. 
 
Proof: Let � = (�, ��

�, ��
�) and � = (�, ��

�, ��
�) be two bipolar-valued fuzzy sets of a set �. Take � = �⋃� = (�, ��

�, ��
�) where 

��
�(�) = max���

�(�), ��
�(�)� and ��

�(�) = min���
�(�), ��

�(�)�. Since � ⊃ � implies ��
�(�) ≧ ��

�(�), ��
�(�) ≦ ��

�(�), since 

� ⊃ � implies ��
�(�) ≧ ��

�(�), ��
�(�) ≦ ��

�(�). Therefore we have max���
�(�), ��

�(�)� ≥ (�, ��
�(�), ��

�),min���
�(�), ��

�(�)� . ≤

��, ��
�(�), ��

�(�)� and max���
�(�), ��

�(�)� ≥ ��, ��
�(�), ��

�(�)�,min���
�(�), ��

�(�)� ≤ ��, ��
�(�), ��

�(�)�, for every � ∈ �. 

Furthermore if � is any bipolar-valued fuzzy set containing both � and � then ��
�(�) ≧ ��

�(�), ��
�(�) ≦ ��

�(�) and ��
�(�) ≧

��
�(�), ��

�(�) ≦ ��
�(�) for every � ∈ � which implies that ��

�(�) ≧ ��
�(�), ��

�(�) ≦ ��
�(�). Hence � ⊂ �. Therefore � is a 

smallest bipolar-valued fuzzy aet containing both � and �. That is union of � and � is the smallest bipolar-valued fuzzy set 
containing both � and �. 
 
2.9 Theorem 
 
The intersection of � and � is the bipolar-valued fuzzy sets which is contained in both � and �. More precisely, if � is any 
bipolar-valued fuzzy set which contained in both � and �, then it also contain the intersection of � and �. 
 
2.10  Definition 
 
Let {��: � ∈ �} be an arbitrary family of bipolar-valued fuzzy set in a set �, where �� = (�, ��

�, ��
�). then  

 
1. ∪ �� = (�,∪ ��

�,∩ ��
�) 

2. ∩ �� = (�,∩ ��
�,∪ ��

�). 
 

2.11 Definition 
 
Let � = (�, ��

�, ��
�) and � = (�, ��

�, ��
�) be any two bipolar-valued fuzzy set of a set �, respectively. The algebraic product of � 

and � is denoted by � ∙ � is defined as � ⋅ � = ���, ��⋅�
� (�), ��⋅�

� (�)� �⁄ ∈ ��, where ��⋅�
� (�) = ��

�(�) ⋅ ��
�(�) and ��⋅�

� (�) =

��
�(�) ⋅ ��

�(�). 
 
2.12 Definition 
 
 Let � = (�, ��

�, ��
�) and � = (�, ��

�, ��
�) be any two bipolar-valued fuzzy set of a set �, respectively. The algebraic sum of � and 

� is denoted by � + � is defined as � + � = ���, ����
� (�), ����

� (�)� �⁄ ∈ ��, where ����
� (�) = ��

�(�) + ��
�(�) − ��

�(�) ∙ ��
�(�) 

and ����
� (�) = ��

�(�) ∙ ��
�(�). provided the sum is less than or equal to unity. Thus unlike the algebraic product the algebraic 

sum is meaningful only when the condition ��
�(�) + ��

�(�) ≦ 1 and ��
�(�) + ��

�(�) ≧ 1 is satisfied for all �. 
 
2.13 Definition 
 
Let � = (�, ��

�, ��
�) and � = (�, ��

�, ��
�) be any bipolar-valued fuzzy set of a set � respectively Then algebraic difference of � and 

� is denoted by |� − �| is defined as |� − �| = ���, �|���|
� (�), �|���|

� (�)� �⁄ ∈ ��, where �|���|
� (�) = ��

�(�) − ��
�(�) + ��

�(�) ∙

��
�(�) and �|���|

� (�) = ��
�(�) ∙ ��

�(�). 

 
2.14 Definition 
 
Let � = (�, ��, ��) and � = (�, ��, ��),Λ = (�,Λ�,Λ�) be arbitrary bipolar-valued fuzzy sets. The convex combination of �, � 

and Λ is denoted by ���, ��;Λ��, (��, ��;Λ�) and is defined by the relations ���, ��,Λ�� = Λ��� + (Λ�)′�� and 

(��, ��;Λ�) = Λ��� + (Λ�)′��, where �Λ��
′
 is the complement of Λ� and (Λ�)′ is the complement of Λ�. Written out in terms 

of membership functions 
 
�(�,�;Λ)
� (�) = �Λ

�(�)��
�(�) + [1 − ��

�(�)]��
�(�), 

� ∈ �, �(�,�;Λ)
� (�) = �Λ

�(�)��
�(�) + [−1 − ��

�(�)]��
�(�), � ∈ � 

 
2.15 Remark 

 
A basic property of the convex combination of �, � and Λ is expressed by � ∩ � ⊂ (�, �;Λ) ⊂ A ∪ B for all Λ. This property is 
an immediate consequence of inequalities min(��

�(�)��
�(�)] ≦ ��Λ

�(�) + (1 − �)��
�(�) ≦ max	(μ

�
�(x), μ

�
�(x), ∀� ∈ � and 

max(��
�(�)��

�(�)] ≧ ��Λ
�(�) + (1 − �)��

�(�) ≧ min	(μ
�
�(x), μ

�
�(x), ∀� ∈ �	. 
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2.16 Definition 
 

Let ��, … . . , �� be a bipolar-valued fuzzy set in ��, … . . , �� respectively. The Cartesian product �� × … .× �� is an bipolar-valued 

fuzzy set defined by �� × … . .× �� = �
�(��, … , ��), ���,…,��

� (��, … , ��), ���,…,��
� (��, … , ��)�:

(��, … , ��) ∈ (��, … , ��)
�. 

 
2.17 Definition 
 
Bipolar-valued fuzzy set � = (��, ��) is called a convex bipolar-valued fuzzy set if for all �, � ∈ �, � ∈ [0,1], ��(�� +
(1 − �)�) ≥ ��(�)⋀��(�) and ��(�� + (1 − �)�) ≤ ��(�)⋁��(�). 
 
2.18 Theorem 

 
If � and � are convex, so is their intersection  
 
Proof: Let � = �⋂�. Then 
 

 ��
�(�� + (1 − �)�) = min���

�(�� + (1 − �)�), ��
�(�� + (1 − �)�)� 

 ��
�(�� + (1 − �)�) = max���

�(�� + (1 − �)�), ��
�(�� + (1 − �)�)�. Since � and � are convex we have ��

�(�� + (1 − �)�) ≥

min���
�(�), ��

�(�)� , ��
�(�� + (1 − �)�) ≤ max���

�(�), ��
�(�)� , ��

�(�� + (1 − �)�) ≥ min���
�(�), ��

�(�)� , ��
�(�� +

(1 − �)�) ≤ max���
�(�), ��

�(�)�. Now we get	 

��
�(λx + (1 − λ)y) ≥ min�min���

�(�), ��
�(�)� ,min���

�(�), ��
�(�)��                              

≥ min�min���
�(�), ��

�(�)� ,min���
�(�), ��

�(�)��                                ≥ min���
�(�), ��

�(�)�. 

��
�(�� + (1 − �)�) ≤ max�max���

�(�), ��
�(�)� ,max���

�(�), ��
�(�)��                                  

≤ max�max���
�(�), ��

�(�)� ,max���
�(�), ��

�(�)��                 ≤ max���
�(�), ��

�(�)�. 
 
2.19 Definition 

 
Bipolar-valued fuzzy set � is called a concave bipolar-valued fuzzy set if for all �, � ∈ �, � ∈ [0,1], ��

�(�� + (1 − �)�) ≤
��
�(�)⋁��

�(�) and ��
�(�� + (1 − �)�) ≥ ��

�(�)⋀��
�(�). It clear that � is convex bipolar-valued fuzzy set if and only if �� is a 

concave bipolar-valued sets  
 
2.20 Definition 
 
Let � = (��

�, ��
�) and � = (��

�, ��
�) be two bipolar-valued fuzzy set of a set �. Then composition is defined by � ∘ � =

{(�, ��∘�
� (�), ��∘�

� (�))} where 
 

��∘�
� = �

sup
�∈��

{min(��
�(�), ��

�(�)} 		��		� ∈ ��

0																											��ℎ������								

� 

 ��∘�
� = �

inf�∈��{(max(��
�(�), ��

�(�)} , ��		� ∈ ��

0																																��ℎ�������
� 

 
2.21 Definition 

 
Let � and � be two empty sets and �: � ⟶ � be a mapping. Let � ∈ �(�) be a collection of all bipolar-valued fuzzy sets. Then 

the image of �, under �, denoted by �(�) = (�, ��(�)
� , ��(�)

� ) is defined by ��(�)
� (�) = �⋁

���, ��
�(�); � ∈ ���(�)��, ��	���(�) ≠ 0

0																																	��ℎ������
� 

��(�)
� (�) = �⋀

���, ��
�(�); � ∈ ���(�)��, ��	���(�) ≠ 0

0																																		��ℎ������
� 

 

Let � ∈ �(�) then the pre image of �, under �, denoted by  ���(�) = ��, ����(�)
� , ����(�)

� �, defined by ����(�)
� (�) =

��
���(�)�, ����(�)

� (�) = ��
���(�)�. 

 
2.22 Theorem 

 
Let �⋃� is a concave bipolar-valued fuzzy set when both � and � are concave bipolar-valued fuzzy sets. 
 
Proof: Let � = �⋃�, then 
 

��
�(�� + (1 − �)�) = max���

�(�� + (1 − �)�), ��
�(�� + (1 − �)�)�. 
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��
�(�� + (1 − �)�) = min���

�(�� + (1 − �)�), ��
�(�� + (1 − �)�)�.  Since � and � are concave, ��

�(�� + (1 − �)�) ≤

max���
�(�), ��

�(�)� , ��
�(�� + (1 − �)�) ≤ max���

�(�), ��
�(�)�. 

 

��
�(�� + (1 − �)�) ≥ min���

�(�), ��
�(�)�, 

��
�(�� + (1 − �)�) ≥ min���

�(�), ��
�(�)�. 

 
Now we get, 
 

��
�(�� + (1 − �)�) ≤ max�max���

�(�), ��
�(�)� ,max���

�(�), ��
�(�)�� 

≤ max�max���
�(�), ��

�(�)� ,max���
�(�), ��

�(�)�� 

≤ max���
�(�), ��

�(�)�. 

��
�(�� + (1 − �)�) ≥ min�min���

�(�), ��
�(�)� ,min���

�(�), ��
�(�)�� 

≥ min�min���
�(�), ��

�(�)� ,min���
�(�), ��

�(�)��. 

≥ min���
�(�), ��

�(�)�. 
 
Let �, �, � and � be ordinary finite non-empty sets. Let � given by the membership functions ��

� and ��
� respectively and the non-

membership functions ��
� and ��

� respectively where ��
�, ��

�, ��
�, ��

�: � ⟶ [0,1]. � × � is bipolar-valued set in � × � defined by  

 ��×�
� (�, �) = min���

�(�), ��
�(�)� , ��×�

� (�, �) = max���
�(�), ��

�(�)�, for all �, � ∈ �. 
 
2.23 Definition 
 
Let � ⊆ � × �, that is ��

�(�, �) ≤ ��×�
� (�, �) and ��

�(�, �) ≥ ��×�
� (�, �) with the condition that 0 ≤ ��

�(�, �) + ��
�(�, �) ≤ 1. 

Then � is an bipolar-valued fuzzy relation from � to �. 
 
2.24 Definition 
 

Given a binary bipolar-valued fuzzy relation between � and � we can define ��� between � and � be means of ����
� (�, �) =

��
�(�, �), ����

� (�, �) = ��
�(�, �), ∀(�, �) ∈ � × � to which we will call inverse relation of �. 

 
2.25 Definition 
 
Let � and � be two bipolar-valued fuzzy relations between � and � for every (�, �) ∈ � × � we can define  
 

a. � ≤ � ⟺ ��
�(�, �) ≤ ��

�(�, �) and ��
�(�, �) ≥ ��

�(�, �). 
b. � ≾ � ⟺ ��

�(�, �) ≤ ��
�(�, �) and ��

�(�, �) ≤ ��
�(�, �). 

c. �⋁� = ��(�, �), ��
�(�, �)⋁��

�(�, �), ��
�(�, �)⋀��

�(�, �)��. 

d. �⋀� = ��(�, �), ��
�(�, �)⋀��

�(�, �), ��
�(�, �)⋁��

�(�, �)��. 

e. �� = ��(�, �), ��
�(�, �), ��

�(�, �)�, � ∈ �, � ∈ ��. 
 

2.26  Definition 
 

An bipolar-valued fuzzy relation � = {(�, �), ��
�(�, �), ��

�(�, �) �, �⁄ ∈ � × �}. is said to be reflexive if ��
�(�, �) = 1 and 

��
�(�, �) = 0 for all � ∈ �. Also � is said to be symmetric if ��

�(�, �) = ��
�(�, �) and ��

�(�, �) = ��
�(�, �), fro all �, � ∈ �. 

 
2.27  Theorem 
 
If � is symmetric then so is ���. 
 

Proof: ����
� (�, �) = ��

�(�, �) = ��
�(�, �) = ����

� (�, �) 

 ����
� (�, �) = ��

�(�, �) = ��
�(�, �) = ����

� (�, �), ∀�, � ∈ �. 
 
2.28 Theorem 
   
� is symmetric if and only if � = ���. 
 
Proof: Let � be symmetric then  
 

 ����
� (�, �) = ��

�(�, �) = ��
�(�, �) 

 ����
� (�, �) = ��

�(�, �) = ��
�(�, �) for all �, � ∈ �. So, ��� = �. 

Conversely, let ��� = � 
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 ��
�(�, �) = ����

� (�, �) = ��
�(�, �), ��

�(�, �) = ����
� (�, �) = ��

�(�, �). 
 
2.29 Definition 
 
If �� = {(�, �), ��

�(�, �), ��
�(�, �) �, �⁄ ∈ � × �} and �� = {(�, �), ��

�(�, �), ��
�(�, �) �, �⁄ ∈ � × �}. be a two bipolar-valued 

fuzzy relations on � then composition denoted by �� ∘ �� is defined 

by�� ∘ �� = ��(�, �), (��
� ∘ ��

�)(�, �), (��
� ∘ ��

�)(�, �)� �⁄ , � ∈ � × ��,where (��
� ∘ ��

�)(�, �) = sup�∈��min���
�(�, �), ��

�(�, �)�� 

and  (��
� ∘ ��

�)(�, �) = inf�∈��max���
�(�, �), ��

�(�, �)��. 
 
2.30 Definition   
        
An bipolar-valued fuzzy relation � on � is called transitive if � ∘ � ⊆ �. 
 
2.31  Theorem  
 
If � is a transitive relation then so ���. 
 

Proof: ����
� (�, �) ≥ ����∘���

� (�, �). 

 ����
� (�, �) = ��

�(�, �) ≤ ��∘�
� (�, �) = min�∈��min���

�(�, �), ��
�(�, �)�� 

 = min�∈� �max �����
� (�, �), ����

� (�, �)�� = ����∘���
� (�, �). So ��� ∘ ��� ⊆ ���. 

 
2.32 Definition 
 
An bipolar-valued fuzzy relation � on � is called an bipolar-valued fuzzy equivalence relation if � is reflexive, symmetric and 
transitive. 
 
2.33  Definition 
 

For any bipolar-valued fuzzy set � = ��, ��
�(�), ��

�(�)� of a set � we defined a (�, �)-cut of � as the crisp subset {� ∈

� ��
�(�)⁄ ≥ �, ��

�(�) ≤ �} of � and it is denoted by ��,�(�). 
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