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 ARTICLE INFO   ABSTRACT 
 

 

We introduce the notation of admissible subgroup H of � = ℝ(���) ⋊ ��(1 + �,ℝ) relative to the 
(extended) metapletic representation �� via the wigner distribution. Under mild additional assumptions, 

it is shown to be equivalent to the fact that the identity ∑ ��� = ∫ ∑ 〈��,���ℎ����〉��
��(ℎ�)���ℎ� holds 

(weakly) for all �� ∈ ��(ℝ(���)). They used this equivalence to exhibit classes of admissible subgroups 

of ��(2,ℝ) by E. Cordero, F. Damai, K. Nowak, and A. Tabacco [20]. We also eastablish some 
connections with wavelet theory, i.e., with curvelet and contourlet frames.  
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INTRODUCTION 
 

The study of reproducing formulae for functions in ��(ℝ(���)) has attracted, in physics (Ali et al., 2000), group representations 
(Dixmier and Les, 1996) and applied mathematics, both in Gabor analysis (Grochenig et al., 2001) and in wavelet theory (Candes 
et al., 2001; Do and Vetterli; Laugesen et al., 2002). In a very general and abstract sense, they can all be recast in a formula of the 
series type.  
 

∫ ∑ 〈��,(��)��〉��
(��)���ℎ�,    �� ∈ ℋ                                                                                                                                                (1) 

 

where ℋ  is a Hilbert space and ℎ� ⟼ (��)�� is an ℋ -valued measurable function on somemeasure space (H, (1 + �)ℎ�).  
 

The cases of greatest interest concern Hilbert spaces of functions, while the measure space H serves as parameter space. Thus, H 
takes into account the particular kind of analysis and synthesis processes that a formula like (1), known as reproducing formula, is 

meant to describe. We are mostly interested in the case in which His a Lie group with left Haar measure dℎ�, ��∈�
�(ℝ(���)) is 

fixed and ℎ� ⟼ (��)��  is an ��(ℝ(���))valued unitary representation of H. This rich structure often provides both a very efficient 

tool for computations and a means for finding new reproducing formulae, specially when H is chosen among the subgroups of 
some classical group of linear symmetries. A class of groups that has been widely studied is the class of semi direct products H = 
ℝ(���) ⋊  D, whereD is a closed matrix group (the so-called dilation group). admitted a natural unitaryrepresentation on 
��(ℝ(���)), the main ingredient for the construction of a wavelet transform by E. Cordero, F. Damai, K. Nowak, and A. Tabacco. 
Initially, only irreducible square-integrable representations were considered [2, 12], but it soon became clear that nonirreducible 
representations (Grochenig et al., 1992; Mallat and Zhong, 1992; Fuhr and Mayer, 2002) are of relevance as well. The authors of 
[18] have proved a characterization of those dilation groups D which give rise to a reproducing formula (1). They introduce a 

notion of admissibility,a sufficient condition for a subgroup D of GL(ℝ, 1 + �) to admit sequence of windows��∈�
�(ℝ(���)) such 

that (1) works for all��∈�
�(ℝ(���)).  
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A dilation group D is admissible if there exists a Borel measurable 
(1 + �) ∈��(ℝ(���)) such that � >  −1 and 
 

∫ ∑ (1 + �)�∑ ��
�

� � �
(���)

��� �� = 1,     ��� �.�.   ∑ ��
�

� ∈  ℝ(���)  
�

                                                                                            (2)        

 

where � �
(���)

� is the transpose of the matrix a, ∑ ��
�

� ⟼ ∑ ��
�

� � �
(���)

�is the right action of a ∈ D, and da is the left Haar measure 

on D. The above definition is motivated by the analysis of the “a(∑ ��
�

� )+ (a + �)” group. In that case, any admissible wavelet �  

(in the usual Calderón sense) gives a function (1 + �) = |��|2 for which formula (2) holds. 
 
We work in a somewhat different setting. First, the Lie group H in (1) is a subgroup of the semidirect product G = ℝ(���) ⋊

 Sp(1 + �, ℝ) of the Heisenberg group and the symplectic group. Secondly, the representation ℎ� ⟼ ������
arises from the 

restriction to H of the reducible(extended) metaplectic representation µe of G as applied to a fixed and suitable sequence of 
window functions ��∈�

�(ℝ(���)). A group H for which there exists the sequence of windows �� such that (1) holds is said to be 

reproducing. A complete classification of reproducing subgroups in the case � = 0 is given in [8], but for the case ε > 1, the 
groups we treat here are the only known examples. Although, the setups ℝ(���) ⋊  D and ℍ (���) ⋊ Sp(1 + �, ℝ) are quite different 
in spirit, there is a crucial conceptual link between them. The point is that both are intimately related to the geometry of affine 
actions on Euclidean space. Indeed, one of the most important features of µe is that it may be realized by affine actions on 

ℝ�(���)by means of the Wigner distribution. The referred to (Claasen et al., 1980; Folland, 1998; Grochenig, 2001) for a thorough 
discussion of this basic construct in time-frequency analysis.  
 

The cross-Wigner distributions �
��,�

�
�

of ��,g
�∈��(ℝ(���)) are 

 

∑ �
��,�

�
�

�∑ ��
�

� ,∑ ξ�
�

� �� = ∫ ∑ �����〈∑ ��
�

� ,��〉
� �� �∑ ��

�
� +

��

�
� gj �yj +

�j

�
�

��������������
 �y�                                                                                  (3) 

 

The quadratic expression � ��

�
 := � ��,��

�
is usually called the Wigner distributions of ��. The crucial properties of � �alluded to 

above is that it intertwines µe and the affine action on ℝ�(���). In other words: 
 

�
��(�

�)��

�
(∑ ��

�
� ,∑ ξ�

�

�
� ) = � ��

�
�(g�)��  · (∑ ��

�
� ,∑ ξ�

�
� )�, g�∈ G,  

 

Where g� · (∑ ���
�

� ,∑ ξ�
�

�
� ) is the natural affine action of G on phase space. Actually, since there producing formula is insensitive 

to phase factors, i.e., to the action of the center of ℍ (���), the group G is trulyℝ�(���) ⋊  Sp(1 + �, ℝ), whose affine action on 
ℝ�(���)is rather obvious. This is why in our Definition 8 the Wigner distribution plays the same role a(1 + �)plays in (2). Thus, 

we call admissible a connected Lie subgroup H ⊂  G if there exists��∈�
�(ℝ(���)) such that 

 

∫ ∑ � ��

�
� �ℎ�

��.(∑ ��
�

� ,∑ ξ�
�

� )�
�

�ℎ� = 1,     ��� �.�.(∑ ��
�

� ,∑ ξ�
�

�  )∈ ℝ�(���)  

 
We exhibit another reproducing subgroup of Sp(2, ℝ), that we denote TDS(2), which is a covering of the similitude group of the 
plane SIM(2). We then show that our theory, for both TDS(2) and SIM(2), parallels the theory developed in the context of two-
dimensional wavelets. The groups TDS(2) and SIM(2) are the forerunners of the curvelet and contourlet frames, nowadays heavily 
employed in the context of signal processing [4, 10]. In particular, curvelets are actively investigated from the point of view of 
statistical estimation, sparsity of the representation and rate of approximation. The approach starts from the whole time-frequency 
plane ℝ�(���), instead of looking at either time or frequency, as is typical in the philosophy of the setting ℝ(���) ⋊  D. This justifies 
the useof the Wigner distribution and its time-frequency properties. We show that a class of groups, parametrized by � ∈ ℝ and 
including SIM(2) when � = - �, is reproducing. This time, however, our proof is direct, namely we show (1) without using 
Theorem 7.  
 
Preliminaries and Notation 
 
The symplectic group is defined by 
 

Sp(1 + �,ℝ)= �g�  ∈  GL(2(1 + �),ℝ): g�
(���) ( J ) g�  =  J�  

 
where 

�= �
0 �(���)

− �(���) 0
� 
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is the standard symplectic form 
 

ω(∑ ��
�

� , ��) = ∑ ��
�

� ( 
(���)

J )�� ∑ ��
�

� , ��∈ℝ�(���).                                                                                                                       (4) 

The metaplectic representation µ of (the two-sheeted cover of) the symplectic group arises as intertwining operator between the 
standard Schrödinger representation ρ of the Heisenberg group ℍ (���)and the representation that is obtained from it by composing 
ρ with the action of Sp(1 + �,ℝ) by automorphisms on ℍ (���) (see, e.g., (Folland, 1998)). We briefly review its construction. The 
Heisenberg group ℝ(���)is the group obtained by defining on ℝ���� the product 
 

(��,1 + �)∙��j� ∙�
���

�
�� = ��� + �j�,�

������

�
� −

�

�
� ���,�j���  

 
where ω stands for the standard symplectic form in ℝ�(���) given in (4). We denote the translation and modulation operators on 
��(ℝ(���)) by 
 

�
(∑ ��

�
� )

�� (1 + �) = �� ((1 + �) −∑ ��
�

� ) and �
(∑ ��

�
� )

�� (1 + �) =����〈∑ ��
�

� ,���〉�� (1 + �).  

 

The Schrödinger representation of the group ℍ (���)on ��(ℝ(���)) is then defined by 
 

��∑ ��
�

� ,∑ ξ�
�

� ,1 + ����(�
�)= ����(���)���〈∑ ��

�
� ,∑ ���

�
� 〉����〈∑ ��

�
� ,��〉����

� − ∑ ��
�

� �  

 

= ����(���)���〈∑ ��
�

� ,∑ ��
�

� 〉�
(∑ ��

�
� )

�
(∑ ��

�
� )

��(1 + �) 

 

where we write �� = (∑ ��
�

� ,∑ ξ�
�

� ) when we separate space components (that are∑ ��
�

� ) from frequency components (that are 

∑ ξ�
�

� ) in points �� in phase space ℝ�(���). The symplectic group acts on ℍ (���)via automorphisms that leave the center {(0, 1 +
�) : (1 + �) ∈ ℝ} ∈ ℍ  ≃  ℝ ofℍ (���)pointwise fixed: 
 
��· (�

�, 1 + �) = (���
�, 1 + �).  

 
Therefore, for all fixed ��∈ Sp(1 + �, ℝ) there is a representation 

 

���  : ℍ
(���)→ �  (��(ℝ(���))), (��, 1 + �) ⟼  ρ (��· (�

�, 1 + �)) 

 
whose restriction to the center is a multiple of the identity. By the Stone-von Neumann theorem, ���are equivalent to ρ. That is, 

there exists an intertwining unitary operator µ(��) ∈ � (��(ℝ(���))) such that ���(�
�, 1 + �) = µ(��) ∘ ρ(��, 1 + �) ∘ µ��

��, for all 

(��, 1 + �) ∈ℍ (���). By Schur’slemma, µ is determined up to a phase factors ���
�
,��∈ ℝ. It turns out that the phase ambiguity is 

really a sign, so that µ lifts to a representation of the (double cover of the) symplectic group. It is the famous metaplectic or Shale-
Weil representation. The representations ρ and µ can be combined and give rise to the extended metaplectic representation of the 
group G = ℍ (���) ⋊  Sp(1 + �, ℝ), the semidirect product of ℍ (���) and 
 
Sp(1 + �, ℝ).The group law on G are 
 

�(��,1 + �),��� · ���j�,�
���

�
��,� j

�� = �(��,1 + �) ·����
j�,�

���

�
��,��� j

��  

 
and the extended metaplectic representation µe of G are 
 

µe�(�
�,1 + �),���= ρ(��, 1 + �) ∘ µ(��).  

 
A slight simplification in our formalism comes from the observation that the reproducing formula (1) is insensitive to phase 

factors: If we replaces µe (ℎ�)�� := (��)�� with ���
�
µe (ℎ�)��the formula is unchanged, for all �� ∈ ℝ. The role of the center of the 

Heisenberg group is thus irrelevant, so that the “true” group under consideration is ℝ�(���) ⋊  Sp(1 + �, ℝ), which we denote again 
by 
G. Thus, G acts naturally by affine transformations on phase spaces, namely 
 

g� · (∑ ��
�

� ,∑ ξ�
�

� ) = ((1+�, 1+�), ��) · (∑ ��
�

� ,∑ ξ�
�

� ) = ��( �∑ ��
�

� ,∑ ξ�
�

� �
(���)

) + (1 + �,1 + �)
(���)

                                              (5) 

 
For elements of Sp(1 + �, ℝ) in special form, the metaplectic representation can be computed explicitly in a simple way. For 
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�� ∈ ��(ℝ(���)), we have 

 

� ��
�� 0

0 ��
��(���) �� ���∑ ��

�
� � = ��� ����

�� �⁄
�����

��(∑ ��
�

� )�                                                                                                        (6) 

 

� ��
1 0
� 1

�� ���∑ ��
�

� � = ± ����〈� ∑ ��
�

� ,∑ ��
�

� 〉���∑ ��
�

� �                                                                                                                        (7) 

 

�( J ) = �(���) �⁄ ℱ ��                                                                                                                                                                          (8) 
 
where ℱ  denotes the Fourier transform 
 

∑ ℱ ���∑ ξ�
�

� �� = ∫ ∑ ���∑ ��
�

� ������〈∑ ��
�

� ,∑ ��
�

� 〉
�ℝ(�� �)

�(∑ ��
�
)� ,    �� ∈ ��(ℝ(���))∩ ��(ℝ(���))  

 

In the above formula and elsewhere, 〈∑ ��
�

� ,∑ ξ�
�

�
� 〉denotes the inner products of ∑ ��

�
� ,∑ ξ�

�
�  ∈ ℝ(���) . Similarly, for ��, g

� ∈

��(ℝ(���)), 〈��,g
�〉 will denote their inner product in ��(ℝ(���)). Other notation is as follows. We putℝ̇ = ℝ \ {0}, ℝ±  = (0, ±∞). 

For 0 ≤ � ≤ ∞, ‖∙‖��� stands for the���� -norm of measurable functions on ℝ(���) with respect to Lebesgue measure. The left Haar 
measure of a group H will be written dℎ� and we always assume that the Haar measure of a compact group is normalized so that 

the total mass is one. 
 
The Reproducing Condition 
 
Definition 1. We say that a connected Lie subgroup H of G = ℝ�(���) ⋊ Sp(1 + �, ℝ) is areproducing group for µe if there exists 
the sequence of functions �� ∈ ��(ℝ(���)) such that 

 

∑ ��� = ∫ ∑ 〈��,��(ℎ�)��〉��
��(ℎ�)���ℎ�,     ��� ��� �� ∈  �

��ℝ(���)�                                                                                                  (9) 

 

All �� ∈ ��(ℝ(���) ) for which (9) holds is called reproducing sequence of function. 

 

Notice that we do require formula (9) to hold for all functions in ���ℝ(���)�for the same sequence of windows �� , but we do not 

require the restriction of µe to H to be irreducible. Equivalently, formula (9) can be written in term of the ��-norm of �� 

 

∑ ����
�

� = ∫ ∑ ���,��(ℎ�)���
�

��
 �ℎ�,��� ���� �� ∈  �

��ℝ(���)�                                                                                                    (10) 

 
The Wigner distribution and some useful properties 
 
We collect some well-known properties of the Wigner distribution and then we establish Lemma 4 and 5 and 6. For the proof of 
Proposition 2 see (Folland, 1998; Grochenig, 2001), whereas Lemma 3 is from (Grochenig, 2001). Recall that the cross-Wigner 

distribution is defined, for ��, g
� ∈ ��(ℝ(���)), by (3). 

 

Proposition 2. The Wigner distribution of ��, g
� ∈ ��(ℝ(���)) satisfies: 

 

(i) �
��,�

�
�

 are uniformly continuous on ℝ�(���), and ∑ ��
��,�

�
�

�
�

� ≤  2(���)�∑ ��� �
�
�g��

�
  

(ii) �
��,�

�
�

= �
� j,�

j
j������� in particular, � ��

�
 are real-valued. 

(iii) ������ identity : 〈� ��

�
,�

��
� 〉

��(ℝ�(�� �)) = 〈��,g
�〉
��(ℝ�(�� �))

〈�j,g
j〉��������
��(ℝ(�� �)) 

(iv) �� ��,g
�  ∈ �(ℝ(���)), then �

��,�
�

�
∈  �(ℝ�(���)) 

(v) �� �� ∈  �
�(ℝ(���))∩  ��(ℝ(���)) 

then ∑ �����
�

�  = ∫
ℝ�(�� �)

∑ � ��

�
� �∑ ��

�
� ,∑ ξ�

�
� �d(∑ ��

�
)� d(∑ ξ�

�
� ) 

An alternative description of �
��,�

�
�

is provided by the lemma below (see e.g., [20]). 

 

Lemma 3. Let ���(1 + �)�∑ ��
�

� ,1 + �� = (1 + �)(∑ ��
�

� +  
(���)

�
,∑ ��

�
� - 

(���)

�
)  

 
Be symmetric coordinate transform and 
 

ℱ�(1 + �)∑ �∑ x��� ,∑ ξ�
�

� �� = ∫ (1 + �)∑ �∑ x�
�

� ,1 + ���ℝ(�� �)
������

∑ ��
�

� ,�����(1 + �)  
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be the Fourier transform in the second variable.  
Then 

�
��,�

�
�

= ℱ����  (��⨂ gj�)                                                                                                                                                                       (11) 

 
We use Lemma 3 to prove the following density result. 
 

Lemma 4. If R(∑ ��
�

� ,∑ ξ�
�

� ) are real, slowly increasing measurable function on ℝ�(���)such that 
 

∫ ∑ ��∑ ��
�

� ,∑ ξ�
�

� ��ℝ�(�� �)
� ��

�
�∑ ��

�
� ,∑ ξ�

�
� ��(∑ ��

�
)� �(∑ ξ�

�
� ),��� ��� �� ∈ �(ℝ(���))  

 

then R (∑ ��
�

� , ∑ ξ�
�

�  ) = 0 for a.e. (∑ ��
�

� ,∑ ξ�
�

� ) ∈  ℝ�(���).  
 

Proof. By Lemma 3 it follows that V:= span {�
��,�

�
�

��,g
� ∈ �(ℝ(���))} are dense in �(ℝ(���)).For ��,g

� ∈ S(ℝ(���)), a 

straightforward computation gives 
 

�
�����

�
�

= � ��
+ � �� + 2ℛ��

��,�
�

�
,,�

�����
�

�
= � ��

�
 + �

��
�
 + 2���

��,�
�

�
 

 

and the assumption implies〈�,ℛ��
��,�

�
� 〉= 0 and 〈�,���

��,�
�

� 〉= 0. Since R is real, these two identities are equivalent 

to〈�,�
��,�

�
� 〉= 0. The conclusion follows from the density of V, because for every (1 + �)∈ �(ℝ�(���)) the functional 

 

(1 + �)⟼ ∫
ℝ�(�� �)

∑ � �∑ x��
�

� ,∑ ξ�
�

�  �� (1 + ε) �∑ x�
j

� ,∑ ξ�
j

� �
�����������������������������

d(∑ x�
�

� )d�∑ ξ�
�

� �  

 
are atempered distributions and we have 
 

∫ ∑ ��ℝ�(�� �)
�∑ ��

�
� ,∑ ξ�

�
� �(1 + ε)( ∑ ��

j
� ,∑ ξ�

j
� )

����������������������������
�(∑ ��

�
� )�(∑ ξ�

�
� )= 〈�,(1 + �)〉  

 

= ����→ � 〈�,∑ ��� (��)�,(�
�)�

��
��� 〉  

 

= ����→ � 〈�,∑ ��� (��)�,(�
�)�

��
��� 〉= ����→ � ∑ ��̅

�
��� 〈�,�

(��)�,(�
�)�

� 〉= 0  

 

so that R(∑ ��
�

� ,∑ ξ�
�

� ) = 0, for a.e. (∑ ��
�

� ,∑ ξ�
�

� ) ∈ ℝ�(���) and the proof is complete. 
 

Lemma 5.  Let (��)�,(��)� ∈ ��(ℝ(���)) and define �� := (��)�⨂  (��)� ∈ ��(ℝ�(���)). Then 

 

� ��

�
((z�)�,(z

�)�), (ζ�)�,(ζ
�)�) = � (��)�

�
 ((ζ�)�, (ζ�)�)�

�����

�
((ζ�)�,(ζ

�)�),                                                                                   (12) 

 
where the variables (z�)�,(z

�)�, (ζ�)�, (ζ�)�are in ℝ(���).  
 

Proof. Simply compute the Wigner distribution (3) of ��:= (��)�⨂ �����. 

 
We find an admissibility condition that, together with some additional integrability and boundedness properties of ℎ�  ⟼

� ��

�
(ℎ�

��· (∑ ��
�

� , ∑ ξ�
�

� )) implies that a subgroup Hof 

 
G = ℝ�(���) ⋊  Sp(1+�, ℝ) is reproducing. 
 

Lemma 6. Let �� ∈ �(ℝ(���)),  �� ∈ ℝ(���) and let �j
�  be the Schwartz functions defined by 

 

�j
� (��)= ����(�

�). Then,  

 

�
�j
�
�
�∑ ��

�
� ,∑ ξ�

�
� � = �(∑ ��

�
� )� +

�

����
 (�)

∑ ��
�

�

� �� ��

�
�∑ ��

�
� ,∑ ξ�

�
� �,    �∑ ��

�
� ,∑ ξ�

�
� �                                                                 (13) 

 

Proof. We use the definition (3) to compute the wigner distributions of �j
�. Notice that since �� ∈ �(ℝ(���))  and may 
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interchanges (�)
∑ ��

�
�

�  with the integral sign. Namely,  

 

∑ �
�j
�
�
�∑ ��

�
� ,∑ ξ�

�
� �� = ∫ ∑ �����〈∑ ��

�
� ,��〉

�ℝ(�� �)
�∑ ��

�
� +

��

�
� �� �∑ ��

�
� +

��

�
� �∑ ��

�
� −

��

�
��j �∑ ��

j
� −

�j

�
�

�������������������
 ���  

 

= ∫ ∑ �����〈∑ ��
�

� ,��〉
�ℝ(�� �)

�(∑ ��
�

� )� −
(��)�

�
��� �∑ ��

�
� +

��

�
� �j �∑ ��

j
� −

�j

�
�

�������������������
 ���   

 

= ∑ �∑ x�
�

� �
�
� ��

�
�∑ ��

�
� ,∑ ξ�

�
� �� −

�

�
∫ ∑ (��)��ℝ(�� �)

�����〈∑ ��
�

� ,��〉�� �∑ ��
�

� +
��

�
��j �∑ ��

j
� −

�j

�
�

�������������������
 ���  

 

= ∑ (∑ ��
�

� )� � � ��

�
�∑ ��

�
� ,∑ ξ�

�
� � –  

 

�
�

�
∫ ∑

�

(���)�
(�)

∑ ��
�

�

�
�ℝ(�� �)

�����〈∑ ��
�

� ,��〉�� �∑ ��
�

� +
��

�
� �j �∑ ��

j
� −

�j

�
�

�������������������
 �y��  

 

= ∑ (∑ ��
�

� )�  � ��

�
� �∑ ��

�
� ,∑ ξ�

�
� � + ∑

�

�� ��
(�)

��
�

�  � ��

�
�∑ ��

�
� ,∑ ξ�

�
� �  

 
as desired.      
 
The admissibility condition: We find an admissibility condition that, together with some additional integrability and 

boundedness properties of ℎ� ⟼  � ��

�
�ℎ�

��  ∙�∑ ��
�

� ,∑ ξ�
�

� �� implies that a subgroup H of � = ℝ�(���) ⋊ ��(1 + �,ℝ ) is 

reproducing.  
 

Theorem 7. Suppose that �� ∈ ��(ℝ(���)) are such that the mapping 

 

ℎ�  ⟼  � ��(��)��

�
(∑ ��

�
� ,∑ ξ�

�
� ) =   � ��

�
 (ℎ�

�� · (∑ ��
�

� ,∑ ξ�
�

� )                                                                                                          (14) 

is in ��(H ) for a.e. (∑ ��
�

� ,∑ ξ�
�

� ) ∈ ℝ�(���) and 
 

∫ ∑ �  � ��

�
(ℎ�

�� ∙(∑ ��
�

� ,∑ ξ�
�

� ))�� �ℎ��
≤  �  � ,��� �.� �∑ ��

�
� ,∑ ξ�

�
� � ∈ ℝ�(���)                                                                         (15) 

 

Then condition (9) holds for all �� ∈ ��(ℝ(���)) if and only if the following admissibility conditions are satisfied: 
 

∫ ∑   � ��

�
�ℎ�

�� ∙�∑ ��
�

� ,∑ ξ�
�

� �� �ℎ� = 1 ��
                                                                                                                                       (16) 

��� �.� (∑ ��
�

� ,∑ ξ�
�

� )∈ ℝ(���)  
 
Proof. It is enough to test the reproducing formula (10) on the Schwartz class. Namely, if we show the mappings ∑ ��� ⟼

∑ 〈��,��(ℎ�)��〉�  are an isometry on S(ℝ(���)) into ��(H), the pointwise convergence of the coefficients ∑ 〈��,��(ℎ�)��〉�  

guarantees that (10) holds for all �� ∈ ��(ℝ(���)) as well. 

 

Sufficiency. Assume that (16) is true and take �� ∈ �(ℝ(���)). By (v) of Proposition (2) its ��-norm can be computed via its 

Wigner distributions, that are : 
 

∑ �����
�

� = ∫ ∑   ���

�
�∑ ��

�
� ,∑ ξ�

�
� ���∑ ��

�
� ���∑ ξ�

�
� ��ℝ�(�� �)   

 

= ∫ �∫ ∑ �ℎ�
��.�∑ ��

�
� ,� ��ℎ����

�
ℝ�(�� �)

  

 

×  (� ��

�
�∑ ��

�
� ,∑ ξ�

�
� ��(∑ ��

�
� )�(∑ ξ�

�
� ))  

 

= ∫ �∫ ∑   � ��

�
�ℎ�

��.�∑ ��
�

� ,� ���  � ��

�
�∑ x�

�
� ,∑ ξ�

�
� ��(∑ ��

�
� )�(∑ ξ�

�
� )

ℝ�(�� �)
�

�
dℎ�  

 
In the last equality, the integral interchange are justified by Fubini Theorem. Indeed, by (14)and (15) we have 
 

∫ ∫ ∑ �  � ��

�
(ℎ�

��.�∑ ��
�

� ,� �)�ℎ�� �  � ��

�
�∑ ��

�
� ,∑ ξ�

�
� �� �ℎ���ℝ�(�� �)

�(∑ ��
�
)� �(∑ ξ�

�
� )  

 

≤ � ∫ ∑ �  � ��

�
�∑ ��

�
� ,∑ ξ�

�
� ��� �(∑ ��

�
)� �(∑ ξ�

�
� )

ℝ�(�� �)
< ∞   
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Further, Moyal’s identity gives 
 

∫ ∑   � ��

�
(ℎ�

��.�∑ ��
�

� ,� ��ℝ�(�� �)
) � ��

�
�∑ ��

�
� ,∑ ξ�

�
� � �(∑ ��

�
)� �(∑ ξ�

�
� )= 〈� ��(��)

�
,� ��

�〉= 〈f�,μ�(ℎ�)〉〈fj,μ�(ℎj)〉�������������  

hence, the equality Necessity. 
 

∑ �����
�

� = ∫ ∑ �〈f�,μ��ℎ��ϕ �〉�
�

��
�ℎ� ,��� ��� �� ∈ ��ℝ(���)�  

 

Conversely, assume (9) true and let ��be in �(ℝ(���)). Moyal’s identityGives  
 

∑ �����
�

� = ∫ �∫ ∑   � ��

�
(ℎ�

��.�∑ ��
�

� ,� ��ℎ���
�

ℝ�(�� �)
  � ��

�
�∑ ��

�
� ,∑ ξ�

�
� ��(∑ ��

�
)� �(∑ ξ�

�
� )                                                       (17) 

 
Using again (v) of Proposition 2, equality (17) may be recast as 
 

∫ �∫ ∑   � ��

�
(ℎ�

��.�∑ ��
�

� ,� ��ℎ���
− 1�

ℝ�(�� �)
  � ��

�
�∑ ��

�
� ,∑ ξ�

�
� ��(∑ ��

�
� )�(∑ ξ�

�
� )= 0  

 
The function is real by (ii) of Proposition 2. Hence, (16) follows applying Lemma 4 to it.     
 

��∑ ��
�

� ,∑ ξ�
�

� � = ∫ ∑   � ��

�
(ℎ�

��.�∑ ��
�

� ,� ��ℎ�� − 1)  

Motivated by Theorem 7, we give the following definition, (see, e.g., [20] ).  
 
Definition 8: We say that a connected Lie subgroup H of G = ℝ�(���) ⋊ Sp(1+�, ℝ) admissible group for µe if there exists the 
sequence of functions �� ∈ ��(ℝ(���)) 

 

∫ ∑   � ��

�
(ℎ�

��.�∑ ��
�

� ,∑ ξ�
�

� ��ℎ���
)= 1,��� �.� �∑ ��

�
� ,∑ ξ�

�
� � ∈ ℝ�(���)                                                                                 (18) 

 

All �� ∈ ��(ℝ(���)) for which (18) holds are called admissible functions.  

 
It is clear that we now dispose of two different tools for checking whether a subgroup H of G =ℝ�(���) ⋊  Sp(1+�, ℝ) is 
reproducing or not. Either we find the sequence of window functions �� for which (9) holds or else we check the admissibility of 

the subgroup H and use Theorem 7. . We stress that Theorem 7 admits other useful applications (Cordero et al., 2005). 
 
Throughout this section � = 1. We prove that the 3-dimensional triangular group are reproducing subgroups of Sp(2, ℝ), where 
 
 

��� (2)= ����(���),ℓ�,�� = �
(1 + �)�� �⁄ �ℓ� �⁄ 0

(1 + �)�� �⁄ (��)�� (1 + �)� �⁄ ��ℓ� �⁄

� : � > 0,ℓ� ∈ ℝ,�� ∈ ℝ�                                                     (19) 

 

(��)�� = �
0 (��)�

(��)� (��)�
�,      �� = ((��)�,(�

�)�)∈ ℝ�,�ℓ� = �1 ℓ�

0 1
�,   ℓ� ∈ ℝ                                                                        (20) 

 
The matrices �ℓ� is called shearing matrix. We use the letters TDS because the restriction of the metaplectic representation to it 
gives rise to translation, dilation, and shearing operators. This fact will be discussed. The main idea of the proof is to reduce the 
two-dimensional condition (16) to the one-dimensional analogue that arises from a reproducing subgroup of ℝ� ⋊  SL(2, ℝ) and to 
a reproducing condition for a window function of another reproducing subgroup ofℝ� ⋊  SL(2, ℝ). It was proven in [8, Thm.2.1] 
that, up to conjugation, there are exactly five reproducing subgroups of ℝ� ⋊ Sp(1+�, ℝ). We are interested in the following two: 
 

�� = ���
1 + �
1 + �

�,�� ,(1 + �),(1 + �)∈ ℝ�  

 

�� = ���
0
0
�,�

1 0
� + � 1

���
�� �⁄ 0
0 �� �⁄

��,� > −  �,(� + �)∈ ℝ�  

 
Sequence of functions (��)� are reproducing for �� if 

 

(��)� ∈ �� (ℝ), and   �(��)��� = 1                                                                                                                                                 (21) 

 
While the sequence of functions (��)� are reproducing for ��if and only if (��)� ∈ ��(ℝ) and 
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∫ ∑ �������
∑ ��

�
� ��

�

�
�

�

�(∑ ��
�
)�

�∑ ��
�

� �
� = ∫ ∑ �������−

∑ ��
�

� ��
�

�
�

�

�(∑ ��
�

�  )

�∑ ��
�

� �
� = 

�

�
,    

∫ (��)�(∑ ��
�

� )(�j)�(− ∑ ��
j

� )
��������������������

�

�(∑ ��
�

� )

(∑ ��
�

� )�
= 0                                                                                                                                        (22) 

 
Clearly,�� ≃ ℝ�(���) so that its Haar measure is the Lebesgue measure d(1 + �)d(1 + �). The group H1 is the only reproducing 

subgroup that lies entirely inside Sp(1, ℝ) = SL(2, ℝ),and it is isomorphic to the “a(∑ ��
�

� ) + (� + �)” group. Its right Haar 
measure is ���(� + �) �⁄   
 
Observe that (16) can be rewritten in terms of the right Haar measure ��ℎ� as 

 

∫ ∑ � ��

�
��

�ℎ�
��  ∙(∑ ��

�
� ,∑ ξ�

�
� )��ℎ� = ∫ ∑ � ��

�
��

�ℎ�  ∙(∑ ��
�

� ,∑ ξ�
�

� )���ℎ� = 1    

 

leading to the following alternative formulation that �� and ��is admissible∫ ∑ � (��)�

�
�ℝ�

�∑ ��
�

� + (1 + �),∑ ξ�
�

� + (1 +

ε)��(1 + ε)d(1 + ε)= 1, 

 

for a.e.�∑ ��
�

� ,∑ ξ�
�

� � ∈ ℝ�                                                                                                                                                                 (23) 
 

∫ ∫ ∑ � ��

�
� ���� �⁄ (∑ ��

�
� ),��� �⁄ (� + �)∑ ��

�
� + �� �⁄ (∑ ξ�

�
� )�

�

�ℝ

��

�
�(� + �)= 1  

 

��� �.�.�∑ ��
�

� ,∑ ξ�
�

� � ∈ ℝ�                                                                                                                                                               (24) 
 
We can finally show that TDS(2) is reproducing. 
 
Theorem 9. Let (��)�, (��)� ∈ ��(ℝ) be reproducing sequence of functions for the subgroups �� and ��, respectively. Then, the 

window sequence of functions �� defined by 

 

��(∑ ��
�

� ,∑ ξ�
�

� ) = 
�

�
 ((��)�⨂  (�j

�)�(∑ ��
�

� ,∑ ξ�
�

� ), (∑ ��
�

� ,∑ ξ�
�

� ) ∈ ℝ�                                                                                         (25) 

 

where (�j
�)�(�

�) = ��(��)� (��), are reproducing sequence of function for TDS(2), i.e., TDS(2) are reproducing subgroups.  

 
Proof. Sinceit is convenient to deal with absolutely convergent integrals, let us first assume 
 
(��)�, (��)� ∈ �(ℝ) ⊂ ��(ℝ)Notice that the assumptions (14) and (15) are trivially satisfied. Hence, it remains to verify the 

admissibility condition (16), i.e. 
 

∫ ∫ ∫ ∑ � ��

�
�

�

�ℝℝ�
�(��,ζ�) � (��)

(���)
(���),ℓ�,����

�(���)

(���)
 �ℓ��(��)��(�

�)� = 1,  

 
�.�.(��,ζ� ) ∈ ℝ�                                                                                                                                                                                (26) 
 

where �
�

���
� d(1 + �) �ℓ��(��)��(�

�)� are the right Haar measures of TDS(2). First, we compute 

 

(��,ζ�)� (��)
(���)

(���),ℓ�,��� with �� = ((��)�,(�
�)�),ζ

� = ((ζ�) �,(ζ
�) �)∈ ℝ� that are 

 

(��,ζ�)( (��)
(���)

(���),ℓ�,��)=

�(1 + �)�� �⁄ �(��)� +
ℓ�

�
(��)�� ,(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄  (��)�(�

�)� + (1 + �)� �⁄ (ζ�) �,(1 + �)�� �⁄ �(��)� �(�
�)� +

ℓ�

�
� (��)� + (��)�(�

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�) � + (ζ�) ���  

 

Secondly, we use Lemma 5 to compute the Wigner distributions � ��

�
 of the sequence of functions ��,  defined in (25), at the 

points (��,ζ�) ( (��)
(���)

(���),ℓ�,��)∶ 

 

� ��

� (��,ζ�) (��)
(���)

(���),ℓ�,�� =
�

�
� (��)�

�
�(1 + �)�� �⁄ �(��)� +

ℓ�

�
(��)�� ,(1 + �)�� �⁄ (��)�(�

�)� + (1 + �)� �⁄ (ζ�) ��  
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× �
(�j
� )�

�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(z

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�) � + (ζ�) ���  

Lemma 6 for the Wigner distributions �
(�j
� )�

�
 gives 

 

�
(�j
� )�

�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(�

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�) � + (ζ�) ���  

=
(��)�

�

(���)
� (��)�

�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(�

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�)+ (ζ�) ���  

+
�

����(���)
�
��
� � (��)�

�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(�

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�) � +

(ζ�) ���                                                                                                                                                                                             (27) 

 
The last term comes from the chain rule, for if 
 

∑ ξ�
�

� = (∑ ξ�
�

� )((��)�,(�
�)�,(ζ

�)�(ζ
�)�)= (1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(�

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�) � +

(ζ�) ��  

 
Then 
 

�
(∑ ��

�
� )

� �
��
�
�(1 + �)�� �⁄ (��)�,∑ ξ�

�
� � =

�
�

���
� (�)

��
� �

��
�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(�

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�)� + (ζ�)��  

 
Next, we compute the integral on the left hand side of (26). From (27), this amounts to computing the sum of two integrals. We 
deal with each of them separately. Since (16) holds true for a.e. ((��)�,(�

�)�,(ζ
�)�,(ζ

�)�)∈ ℝ�, we can assume (��)� ≠ 0.  
Computation of the integral. By performing the change of variables 
 

ℓj� = (1 + �)�� �⁄ (��)� ℓ
� 2⁄ ,(�j�)� = (1 + �)�� �⁄ (��)�(�

�)�,   �ℓ
��(��)� =

�(���)

(��)�
�  �ℓj��(�j�)�   

 
We obtain 
 

�� =
�

�
∫ ∫ ∫ ∑ � (��)�

��

�ℝℝ�
�(1 + �)�� �⁄ �(��)� +

ℓ�

�
(��)�� ,(1 + �)�� �⁄ (��)�(�

�)� +  (1 + �)� �⁄ (ζ�) ��  

 
×

(��)�
�

(���)
� (��)�

�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(�

�)��+

(1 + �)� �⁄ �−
ℓ�

�
(ζ�) � + (ζ�) ���

�(���)

(���)
�ℓ��(��)��(�

�)�  

 

= ∫ ∫ ∫ ∑ � (��)�

�
� �(1 + �)�� �⁄ (��)� + ℓj�,(�j�)� + (1 + �)� �⁄ (ζ�) ��

�

�ℝℝ�
  

 
×

� (��)�

�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ (��)� �

(���)� �⁄ (�j�)� (�
�)�

(��)�
� +  

(���)(�j�)� ℓ
j�

(��)�
� + (��)� −

(���)� �⁄ ℓj�(��) �

(��)�
� �+

(1 + �)� �⁄ (ζ�) ��
�(���)

(���)
�ℓj� �(�j�)� �(y

�)�  

 
 
Integrating first with respect to the variable (��)�, and making the change of variables 
 

(�j�)� =
(���)� �⁄ (�j�)� (�

�)�

(��)�
� +

(���)(�j�)� ℓ
j�

(��)�
� + (��)� −

(���)� �⁄ ℓj�(��) �

(��)�
� ,�(��)� = �(�j�)�   

 

The admissibility condition (23) for the subgroup ��, with (1+�)= ℓj�, (1+�)= (�j�)�  and ���,∑ ξ�
�

� � = ((1 + �)�� �⁄ (��)�,(1 +

�)� �⁄ (ζ�) �)  shows that �� is equal to 
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∫ ∫ ∫ ∑ � (��)�

�
� �(1 + �)�� �⁄ (��)� + ℓj�,(1 + �)� �⁄ (ζ�) � + (�j�)� �� (��)�

��

�ℝℝ�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ (��)�(�

j�)� +

(1 + �)� �⁄ (ζ�) ��
�(���)

���
�ℓj��(�j�)� �(�

�)�   

 

= ∫ ∫ ∑ � (��)�

�
� �(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ (��)�(�

j�)� + (1 + �)� �⁄ (ζ�) ��
�

�ℝ

�(���)

���
�(�j�)�   

 

Finally, the admissibility condition (24) for the subgroup ��, with a = 1 + �, a + � =(�j�)�  
 
Gives 
 

� � � �
�����

�

�

�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ (��)���
j��
�
+ (1 + �)� �⁄ (ζ�)��

�

�ℝ

�(1 + �)

(1 + �)
���j��

�
= 1,    

��� �.�.((��)�,(ζ
�) �)∈ ℝ�                                                                                                                                                              (28) 

 
Computation of the second integral. All we are left to show is that 
 

�� = ∫ ∫ ∫ ∑ � (��)�

�
� �(1 + �)�� �⁄ �(��)� +

ℓ�

�
(��)�� ,(1 + �)�� �⁄ (��)�(�

�)� + (1 + �)� �⁄ (ζ�) ��
�

(���)

�

�ℝℝ�
  

 

× �
(∑ ��

�
� ) �

� � (��)�

�
�(1 + �)�� �⁄ (z�) �,(1 + �)�� �⁄ �(��)� �(�

�)� +
ℓ�

�
(��)�� + (��)�(�

�)��+ (1 + �)� �⁄ �−
ℓ�

�
(ζ�) � +

(ζ�) ���
�(���)

���
�ℓ��(��)��(�

�)�  

 
Vanishes, By performing the same computations as for ��, we obtain 
 

�� = ∑
 � 

(��)�
� �(∑ ��

�
� )�

�
� �∫ ∫ � (��)�

�
�(1 + �)�� �⁄ (��)�,(1 + �)�� �⁄ (��)�(�

j�)�  + (1 + �)� �⁄ (ζ�) ��
�

�ℝ
�  

 

∙�
�(���)

(���)
 �(�j�)� �  

 
Admissibility implies that the expression inside the barackets is equal to 1 for a.e.  
 
(ζ�) � ∈  ℝ

(���), so that �� = 0. By a density argument, the sequence of windows functions 

�����, ����� ∈ �(ℝ) can be replaced by rougher reproducing function in ��(ℝ), thereby finishing the proof.      

 
Condition with Wavelet Theory 
 
We come closer to the group theory that lies behind the construction of two-dimensional wavelets. The analysis of oriented 
features in images requires more flexible objects than the wavelets arising from the tensor product of the usual one-dimensional 
wavelets. Answers to this problem, in the context of signal processing, have been provided by frame systems of directional 
functions with excellent angular selectivity, the frames of curvelets and contourlets (Candes et al., 2001; Do and Vetterli). Both 
make use of translation and dilation operations, and while the curvelet approach obtains directional selectivity by a construction 
that requires a rotation operation, the contourlet setup uses a sheering operation. Although the results do not have direct 
implications in either curve let or contourlet analysis, we point out that they appear to be connected from the point of view of 
group theory, that is, by looking at the restriction of the metaplectic representation to two admissible subgroups of ��(2,ℝ), 
namely ��� (2)and (2).  
 
The main results in this section are Theorem 12 and Theorem 14, (see. e.g.,( Cordero et al., 2000)).  
 
The group ���(�) and its natural representation 
 
We prove Theorem 12. The similitude group SIM(2) of the plane ℝ�is the group generated by translations, rotations, and dilations. 
(a survey on the topic and the related two-dimensional directional wavelets is in [1]). More precisely, for a real angle �� put 

 

(�)�� = �
cos�� sin��
− sin�� cos��

�                                                                                                                                                                  (29) 

 
The standard 2 × 2 rotation matrix. Then SIM(2) consists of all the 3 × 3 matrices 
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��1 + �,��,��� = �
(1 + �)(�)��� ��

0 1
�  

 
Where �> -1, ��is a column vector in ℝ�and �� ∈ [0, 2π ). The product in SIM(2) is just matrix product and a simple calculation 

yields 
 

��1 + �,��,������
�,��,��� = � �(1 + �)��,�� + (1 + �)(�)��(�

�),�� + ���                                                                              (30) 

 
Formally, the action of SIM(2) on ℝ�is obtained by viewing ℝ�as one of the affine charts in ℝℙ�, namely 
 

ℝ� ≃ ��∑ ��
�

�

1
�∶∑ ��

�
� ∈  ℝ�� ⊂  ℝℙ�  

 
In other words, SIM(2) acts on ℝℙ� preserving this affine chart: 
 

��1 + �,��,��� �
∑ x�

�
�

1
�= �

(1 + �)(�)��� ��

0 1
��∑ ��

�
�

1
�= �

(1 + �)(�)���(∑ ��
�

� )+ ��

1
�  

 
The wavelet representation � of SIM(2) on ��(ℝ�) is defined as follows: 
 

ν(1 + �, ��, �� )�� (∑ x�
�

� ) = �
�

���
� �� ��

�

���
� ((�)�� (∑ x�

�
�  −  ��)�,   

 
where ν(1 + �, ��, �� ) stands for ν(T (1 + �, ��, ��)). Notice that if we transpose rotations, dilations and translations to functions 

by 
 

�(��)����� �∑ ��
�

� � = �� �(�)�� ∑ ��
�

� � ,��(���)����∑ ��
�

� � = �
�

���
� �� ��

�

���
� ∑ ��

�
� �,��������∑ ��

�
� � = ��(∑ ��

�
� − ��)  

 
then ν(1 + �, ��, �� )�� = (���(��)���(���))��. The representation ν is known to be irreducible on ��(ℝ�)and it gives rise to a 

reproducing formula. The sequence of wavelets�� are reproducing if 

 

∫ ∑
����(∑ ��

�
� )�

�

�∑ ��
�

� �
��ℝ�

 �(∑ ξ�
�

� ) <  +∞   

 
For our purposes however, it is convenient to view ν in the frequency domain, that is, to compose it with the Fourier transform ℱ . 
We shall therefore write 
 

��1 + �,��,��������� = �ℱ ∘ ��1 + �,��,���������� = (1 + �)�����〈�
�,��〉�� �(1 + �)(�)�����                                                (31) 

 
The group SIM(2) as a subgroup of Sp(2, ℝ) and the action on the lagrange manifold. We adopt the following notation. If�� =
((��)�,(�

�)�)∈ ℝ�, we put 
 
We adopt the following notation. If �� = ((��)�,(�

�)�) ∈ ℝ�, we put 
 

Σ�� = �
(��)� (��)�
(��)� − (��)�

�                                                                                                                                                                      (32) 

 
a 2 × 2 symmetric and traceless matrix. Consider the two subgroups of Sp(2, ℝ): 
 

�� = �(g�)�(1 + �,��)= �
(1 + �)�� �⁄ 0

(1 + �)�� �⁄ Σ�� (1 + �)� �⁄ �∶� > − 1,�� ∈ ℝ��                                                                               (33) 

 

� = ������ = �
(�)��� �⁄ 0

0 (�)��� �⁄
�∶ �� ∈ [0,4�]�                                                                                                                       (34) 

 
It is straightforward to check that: 
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(g�)�(1 + �,��)(g�)�(�
�,��)= (g�)� �(1 + �)��,�� + (1 + �)��� 

 

�����(g
�)�(�

�,��)�����
��

= (g�)�(�
�,(�)��z

�)                                                                                                                              (35) 

 
the latter being immediate from 
 
(�)��� �⁄  Σ

(∑ ��
�

� )
(�)�� �⁄ = Σ

(�)���
 (∑ ��

�
� ) 

                                                                                                                                         (36) 

 
The equality (35) shows that K normalizes �� and hence that �� K inherits the structure of a semidirect products, where the 
product law are given by 
 
(g�)� (1 + �, ��)k(��) · (g

�)� (��, ��)k(��) = (g�)� (1 + �, ��) [k(��)(g
�)� (��, ��)k(�� )

−1 ]k(��)k(��) 

 
= (g�)� (1 + �, ��)(g�)� (��, (�)����

�) k(�� + ��)  

 
= (g�)� ( (1+�) ��, �� + (1+�)(�)����

�) k(�� + ��).   

 
Of course, �� ⋊  K is a subgroup of Sp(2, ℝ). Further, �� is in G0⋊  Kobviously G0⋊ � �� ≃  K ⁄ . 
We shall write 
 

g��1 + �,��,��� = (g�)�(1 + �,��)����� = �
(1 + �)�� �⁄ 0

(1 + �)�� �⁄ Σ�� (1 + �)� �⁄ ��
(�)��� �⁄ 0

0 (�)��� �⁄
�=

�
(1 + �)�� �⁄ (�)��� �⁄ 0

(1 + �)�� �⁄ Σ��(�)��� �⁄ (1 + �)� �⁄ (�)��� �⁄

�  

 
Therefore 
 
g� (1 + �, ��, ��)g

� (��, ��,��) = g� ((1 + �) ��, �� +(1 + �) (�)����
� , (�� + ��) 

 
The mappings 
 
g� (1 + �, ��, ��) ⟼  T (1 + �, ��, �� mod 2π ) 

 
which exhibits �� ⋊ �  as canonically isomorphic to SIM(2) (see (30)) 
 
Next, we identify the action of SIM(2) on ℝ2 with the action of G0⋊  K on a suitable two-dimensional cell C of the Lagrange 
manifold L(ℝ�). The Lagrange manifold is defined as the set of maximal isotropic planes inℝ�, namely the two-dimensional linear 
subspaces of ℝ4 that enjoy the following properties:  
 

If∑ ��
�

� , �� ∈ ℒ, then ω(∑ ��
�

� , ��) = 0. This set inherits the manifold structure of a three-dimensional homogeneous spaces of 
Sp(2, ℝ). Indeed, letus represent planes in ℝ�as 4 × 2 matrices via 
 

ℒ���,��� = ���� �
��
��
�,        ��,�� ∈ � �(ℝ),���� �

��
��
�= 2                                                                                                         (37) 

 
Under the identification (37), two 4 × 2 full-rank matrices identify the same plane if and only if they differ by right multiplication 

by some g� ∈ GL(2, ℝ). Such a 4 × 2 full-rank matrix represents a Lagrangian plane if and only if � ��
(���)

���  is symmetric. Also, 

its columns form an orthonormal set if and only if 
 

� ��
(���)

��� +� ��
(���)

���  = I. In this case, 

 

g����,��� = �
�� − ��
�� ��

� ∈ ��(2,ℝ) 

 
and g�(��, ��) carries the “base” Lagrangian plane ℒ0 = ℒ(I, 0) onto ℒ(��, ��). In general, Sp(2, ℝ) acts on Lagrangian spaces from 

the left, by matrix multiplication on the spanning column vectors. Since we know that g�(��, ��) · ℒ0 = ℒ (��, ��), the Sp(2, ℝ)-

action is transitive on �(ℝ�) and the stabilizer at ℒ0 is the subgroup 
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� = ��
�� Σ���

0 ��
��(���) �:�� ∈ ��(2,ℝ),Σ� ���������� ⊂ ��(2,ℝ) 

 
Thus, L(ℝ�) ≃  Sp(2,ℝ) � ⁄ . An open set in L(ℝ�) that contains the base point ℒ0 is �� = { ℒ(Σ� ) := ℒ(I, Σ�) : Σ�symmetric }, and 
is diffeomorphic to ℝ�under the identification Σ�↔ ℒ(Σ�). We put 

� = �ℒ�∑ x�
�

� � = ℒ �Σ
��
�
� :∑ x�

�
� ∈ ℝ��  

 
the two-dimensional slice inside �� identified with the traceless symmetric matrices. 
 
Proposition 10. The action of SIM(2) on ℝ�corresponds to the natural action of G0⋊  K on C inside the Lagrange manifold L(ℝ�). 

Proof. Allowing right multiplication by (1 + �)� �⁄ (�)�� �⁄ ( and using (36), we compute 

 

g��1 + �,y�,��� ∙ℒ�∑ x�
�

� �  

 

= ���� ��
(1 + �)�� �⁄ (�)��� �⁄ 0

(1 + �)�� �⁄ Σ
��
�
(�)�� �⁄ (1 + �)� �⁄ (�)��� �⁄

� �
1

Σ
(∑ ��

�
)�

� ��(1 + �)� �⁄ (�)�� �⁄ ��  

 

= ���� �
1

Σ
��
�
+ (1 + �)(�)�� �⁄ Σ

(∑ ��
�

� )

� (�)�� �⁄
�  

 

= ���� �
1

Σ
��
�
+ (1 + �)Σ

((�)��
)(∑ ��

�
� )

� �  

 

= �����
1

Σ
���(���)(�)���

(∑ ��
�

� )

� �  

 

= ℒ(�� + (1 + �)(�)���(∑ ��
�

� ))  

 
Therefore, under the canonical homomorphism of G0⋊  K onto SIM(2), the action of SIM(2) on  ℝ�corresponds to the natural 
action of G0 ⋊  K on �.  
 
From compute the metaplectic representation µ on G0⋊  K. We start from a simple observation. Every g� (1 + �, ��, y

�) ∈ G0⋊  K 

decomposes as the product of a block-diagonal matrix and a block-lower triangular matrix, both in Sp(2, ℝ), as follows: 

�
(1 + �)�� �⁄ (�)��� �⁄ 0

(1 + �)�� �⁄ Σ
��
�
(�)��� �⁄ (1 + �)� �⁄ (�)��� �⁄

� = �
(1 + �)�� �⁄ (�)��� �⁄ 0

0 (1 + �)� �⁄ (�)��� �⁄

� �
1 0

(1 + �)�� �⁄ Σ
��
�
(�)��� �⁄ 1�  

 
We rewrite this as g� (1 + �, ��, ��) = D(1 + �, �� ) L(1 + �, y�, ��). Owing to (6) and (7), we have 

 

� �g��1 + �,y�,���� ���∑ ��
�

� � = � ���1 + �,�����1 + �,y�,���� ���∑ ��
�

� �  

 

= ���((1 + �)�� �⁄ (�)��� �⁄ )�� �⁄  � ���1 + �,��,���� ��((1 + �)� �⁄ (�)�� �⁄ (∑ ��
�

� ))  

 

= (1 + �)� �⁄ ��� �− ��〈�(1 + �)�� �⁄ (�)�� �⁄ Σ
��
� (�)��� �⁄ �(1 + �)� �⁄ (�)�� �⁄ �∑ ��

�
� �,(1 + �)� �⁄ (�)�� �⁄ �∑ ��

�
� �〉� ��((1 +

�)� �⁄ (�)�� �⁄ (∑ ��
�

� ))  

 

= (1 + �)� �⁄ ��� �− ��〈(1 + �)�� �⁄ (�)�� �⁄ Σ
��
�
�∑ ��

�
� �,(1 + �)� �⁄ (�)�� �⁄ �∑ ��

�
� �〉� ×  ��((1 + �)� �⁄ (�)�� �⁄ (∑ ��

�
� ))  

 

= (1 + �)� �⁄ �
���〈�

��
�
( ∑ ��

�
� ),∑ ��

�
� 〉

��((1 + �)� �⁄ (�)�� �⁄ (∑ ��
�

� ))  

 
That are 
 

� �g��1 + �,��,���� ���∑ ��
�

� � = (1 + �)� �⁄ �
���〈�

��
�
(∑ ��

�
� ),∑ ��

�
� 〉

�� �(1 + �)� �⁄ (�)�� �⁄ (∑ ��
�

� )�                                                  (38) 
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The intertwining operator and the equivalence 
 
Consider the mapping 
 

Φ ∶ ℝ̇ × ℝ� → ℝ�\{(0,0)},∑ ��
�

� ⟼ �
(∑ ��

�
� )�

��(∑ ��
�

� )�
�

�
,(∑ ��

�
� )�(∑ ��

�
� )��                                                                                   (39)  

 
Its properties are described in the next propositions. 
 
Proposition 11. Let �� be an even function defined on ℝ�. The mapping (39) is a diffeomorphism that satisfies: 

 

(a) The Jacobian of Φ at ∑ ��
�

� ∈.ℝ̇ × ℝ� are ∑ ���
 (∑ ��

�
� )�  =∑ �∑ ��

�
� �

�

� ; 

(b) The Jacobian of Φ ��at �� ∈ ℝ�\{(0,0)} are ∑ ����(��) � = ∑ �∑ x�
�

� (��)�
��

� = 1/(2 ���� ); 

(c) Φ  ( (a(�)�� ∑ ��
�

� )) = (��(��)���Φ (∑ ��
�

� )) for every a ∈ ℝ, every ∑ ��
�

� ∈ ℝ� ; 

(d) (Φ �� ((1 + �) (�)����)) = ((1 + �)� �⁄ (��)�� �⁄ Φ �� (��)), for every �> -1, every �� ∈ ℝ�\{(0,0)}; 

(e)〈Σ
��
�
(∑ ��

�
� ),∑ ��

�
� 〉 = −2〈��,Φ (∑ ��

�
� )〉for every ∑ ��

�
� ∈ ℝ̇ × ℝ� and every �� ∈ ℝ�.  

 

Proof. First we show that Φ define a bijective mapping of ℝ�× ℝ� onto ℝ × ℝ� . Indeed, for ((∑ ��
�

� )�,(∑ ��
�

� )� ) ∈ ℝ�× ℝ� and 
(��, ��) ∈ ℝ × ℝ� 

 

�

(∑ ��
�

� )�
��(∑ ��

�
� )�

�

�
= (��)�

(∑ ��
�

� )�(∑ ��
�

� )� = (��)�

� ⟺    �
(∑ ��

�
� )�

� −
(��)�

�

(∑ ��
�

� )�
�
 = 2(��)�

(∑ ��
�

� )� =
(��)�

(∑ ��
�

� )�

�  

 

For fixed (��)� ∈ ℝ�, the map ℎ�(1+�) = (1+�) –(��)�
� / (1+�) defined in ℝ+ is increasing since ℎj

�(1+�)= 1 –(��)�
� /(1 + �)� > 0. 

Further, ℎ�(1+�) → −∞ for (1+�) → 0+ and ℎ� (1+�) → +∞ for (1+�) → +∞. Therefore, for any given (��)�  ∈  ℝ there is exactly 

one value of (∑ ��
�

� )�
� such that ℎ� ((∑ ��

�
� )�

� ) = 2(��)�. Hence, for all given (��)� ∈ ℝ and (��)� >  0 there is a unique 

((∑ ��
�

� )�,(�
�)�) ∈ ℝ�× ℝ� suchthat Φ ((∑ ��

�
� )�,(∑ ��

�
� )� ) = ((��)�,(��)�). This shows that Φ is bijective from ℝ�× ℝ� onto ℝ 

× ℝ_.  
 

Similarly, it is bijective from ℝ_× ℝ�onto ℝ ×ℝ�and hence from ℝ̇ × ℝ�ontoℝ�\{(0,0)};. It is clearly smooth and its regularity 
follows from 
 

���∑ ��
�

� � = det�
(∑ ��

�
� )� − (∑ ��

�
� )�

(∑ ��
�

� )� (∑ ��
�

� )�
�= (∑ ��

�
� )�

� + (∑ ��
�

� )�
�  

 
This establishes that Φ is a diffeomorphisms and proves (a). As for (b), it follows from (a)and the observation that 
 

(��)�
� + (��)�

� = �
(∑ ��

�
� )�

��(∑ ��
�

� )�
�

�
�
�

+ (∑ ��
�

� )�
�(∑ ��

�
� )�

� =
�

�
�(∑ ��

�
� )�

� + (∑ ��
�

� )�
��

�
  

 

so that 2 ∑ ����� =∑ �∑ ��
�

� �
�

� . 

 
(c) Here we compute 
 

Φ ��(�)��� = Φ ��������(∑ ��
�

� )� + ��� ��(∑ ��
�

� )��,�(− �����(∑ ��
�

� )� + �����(∑ ��
�

� )�)�  

 

�
��

�
�cos2�� ��∑ ��

�
� �

�

�
− �∑ ��

�
� �

�

�
� +

2sin2���(∑ ��
�

� )�(∑ ��
�

� )���,
��

�
�2sin2���(∑ ��

�
� )�

� − (∑ ��
�

� )�
�� + cos2���(∑ ��

�
� )�(∑ ��

�
� )����  

 

= �� �
cos2�� sin2��
− sin2�� cos2��

��
(∑ ��

�
� )�

��(∑ ��
�

� )�
�

�

(∑ ��
�

� )�(∑ ��
�

� )�

�  

 

= ��(�)���Φ �∑ ��
�

� �  
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(d) Put a = (1 + �)� �⁄  and �  = 2�� in (c) to get Φ  ((1 + �)� �⁄ (�)
(� �)⁄ �∑ ��

�
� �

)(∑ x�
�

� )= (1+�)(�)� Φ �∑ ��
�

� �.   

Put next Φ (∑ x�
�

� )= �� and take Φ ��from both sides. This yields (1 + �)� �⁄ (�)(� �)⁄ Φ ��(��) = Φ
���(1 + �)(�)� (��)� 

 

(e) From the definition of Σ
��
�

 and of Φ , we obtain 

 

〈Σ
��
�
 (∑ ��

�
� ),∑ ��

�
� 〉= 〈�

(��)�(∑ ��
�

� )� (��)�(�
�)�

(��)�(∑ ��
�

� )� − (��)�(∑ ��
�

� )�
�,�

(∑ ��
�

� )�

(∑ ��
�

� )�
�〉=

(��)��(∑ ��
�

� )�
� − (∑ ��

�
� )�

�� + (��)��2(∑ ��
�

� )�(∑ ��
�

� )�� = 2〈��,Φ (∑ ��
�

� )〉  
 
as desired to conclude the proof.    
 
Theorem 12. The mapping 
 

∑ � �� ����� = ∑ ����
�� �⁄

� ��(Φ
�� (��)        �� ∈ ℝ̇ × ℝ�  

defines an isometry of �����
� (ℝ�) onto ��(ℝ�) that intertwines π and µ: π(g�)∘ �  = � ∘ µ(g�), for every g� ∈ SIM(2). 

 
Proof. Let �� ∈ �����

� (ℝ�). Then, by (b) in Proposition 11 

 

∑ �� ����
�

� = ∫ ∑ �� �������
�

�ℝ�
��� = ∫

�

����ℝ�
∑ ����Φ

����
�

�  ���  

 

= 2∫ ∫ ∑ ����∑ ��
�

� ��
�
�(∑ ��

�
� )= ∫ ∑ ����∑ ��

�
� ��

�
�(∑ ��

�
� )= ∑ �����

�
��ℝ��

��

��

��

�
  

 
Thus, �  is an isometry. By (31) and (d) in Proposition 11 
 

∑ ��1 + �,��,����� �������� = (1 + �)∑ �����〈�
�,��〉

� � �� �(1 + �)(�)��(��)� = 
(���)

�(���)(�)���
���

� �⁄ ∑ �����〈�
�,��〉

� �� �Φ
�� �(1 +

�)(�)������ =
(���)� �⁄

�(���)(�)��
(��)�

� �⁄
∑ �����〈�

�,��〉��� �(1 + �)� �⁄ (�)�� �⁄ Φ ��(��)�  

 
Finally, by (38) and (e) in Proposition 11 
 

∑ � (��1 + �,��,�������)����� = ∑
�

����
� �⁄� (��1 + �,��,�������(Φ

������)  

 

= ∑
�

����
� �⁄� (1 + �)� �⁄ ∑ �

���〈�
��
,�������,�

������〉
� �� �(1 + �)� �⁄ (�)�� �⁄ Φ ��(��)�  

 

= ∑
(���)� �⁄

����
� �⁄ �����〈�

�,��〉�� �(1 + �)� �⁄ ��� �⁄ Φ ��(��)��   

 
as desired.     
 
The group TDS(2), the contourlet point of view 
 
We prove Theorem 14. We first explain the connection between TDS(2) and the two-dimensional wavelet theory that leads to the 
contourlet construction introduced in (Do and Vetterli). The point is that TDS(2) is isomorphic to the group of mappings of 
(functions on) the plane generated by translations, dilations, and shearing, where the shearing operators are given by 
 

(�ℓ��� ) (∑ ��
�

� ) = ���( �ℓ�
(���) )(∑ ��

�
� )�,�� ∈ ��(ℝ)  

 
and the matrices �ℓ�  is defined in (20). These are the ingredients of the contourlet frames [10].Just as for curvelets, one allows 
dilation and translation operations, but the angular selectivity is achieved by a shearing operation rather than a rotation. 
 
Let L denote the two-dimensional subgroup of Sp (2, ℝ) given by 
 

� = ��
(1 + �) 0

− ℓ�(1 + �) (1 + �)
�∶� > −1,ℓ� ∈ ℝ�  
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The affine action that it induces on ℝ�leads to the semidirect product H = ℝ� ⋊  L.This action has two open orbits �� and ��in ℝ�, 

where �� = {((∑ ��
�

� )�,(∑ ��
�

� )�) :(∑ ��
�

� )�> 0} and �_ = {((∑ ��
�

� )�,(∑ ��
�

� )�)) ; (∑ ��
�

� )�< 0}. The wavelet representation ν of 
H is 
 
ν(1 + �, ��,ℓ� )�� = (����(���)�ℓ�)��,  �� ∈ ��(ℝ�),                                                                                                                         (40) 

 
but it is more convenient to view ν in the frequency domain, namely 
 

π(1 + �, ��, ℓ�)��(��) = (ℱ ∘ ν(1 + �, ��,ℓ� )�� )(��) = �����〈�
�,��〉��(���)( ��ℓ�)

(���)
 �� (��)                                                       (41) 

 
We have π = π�� ⨁ π��_ , where π�� and π�� __

are the subrepresentations of π obtained by restriction to ��(��) and ��(��), 

respectively. The sequence of wavelets �� such that �j
� ∈ ��(��) are reproducings for ���  if 

 

∫ ∫ ∑ �
�j
� ((∑ ��

�
� )�,(∑ ��

�
� )�)

(∑ ��
�

� )�
�

�

�ℝ

�

�
(∑ ξ�

�
� )�(∑ ξ�

�
� )� < ∞   

 
and similarly for π��  (see [3] for more details). 

 

If �� = ((��)�,(�
�)�)∈ ℝ�, we put (��)�� = �

0 (��)�
(��)� (��)�

�, a 2 × 2 symmetric matrix. Then, we check that TDS(2) = G0 ⋊  G1, 

where 
 

�� = �(g�)�(1 + �,��)= �
(1 + �)�� �⁄ 0

(1 + �)�� �⁄ (��)�� (1 + �)�� �⁄ �∶� > −1,�� ∈ ℝ��  

 

�� = �(g�)�(ℓ
�)= �

�ℓ� 0

0 ��ℓ�
(���) �∶ ℓ� ∈ ℝ�  

 
Indeed, for �� = ((��)�,(��)�) ∈ ℝ�, it is easy to see that, using the parameterization in (19) 
 
(g�)� (1 + �, ��)(g�)� ( ℓ�) = (��)(���),ℓ�,((��)�,(��)��ℓ�(��)�) 

 
so that TDS(2) = ���� set-theoretically. Furthermore, 
 
(g�)� (ℓ�)(g�)� (1 + �, ((��)�,(�

�)�))(g�)� (ℓ� )−1 = (g�)� (1 + �, ((��)�,(�
�)�− 2(��)�ℓ

� )).                                                   (42) 
 
This means that ��normalizes ��, so that TDS(2) is the semidirect product G0⋊  ��.Since �� is normal in TDS(2), obviously 
TDS(2) / G0≃  ��. Finally, the products are 
 
g�((1 + �), ((��)�,(�

�)�),ℓ�  )g� (r,((��)�,(��)�), ��) = g� ((1 + �) r, ((��)� + (1 + �)(��)�,(�
�)� + (1 + �) (��)�−2ℓ�(1 +

�)(��)� ), �� +ℓ�) 
 
which implicitly shows the isomorphism TDS(2) ≃  H, as one checks by computing the product in 
 
H =ℝ� ⋊  L. Observe that the decomposition of TDS(2) as a semidirect product is similar to the decomposition of SIM(2) as far as 
the normal factors are concerned. The basic difference consists in the structure of their quotients: It is compact for SIM(2) and non 
compact for TDS(2). In order to compute the metaplectic representation on TDS(2), we observe first that the matrix 
(��)(���),��,ℓ�in (19) can be written as the product of a diagonal matrix �(���),ℓ�and a lower triangular matrix �(���),��,ℓ�as follows 

 

(��)(���),��,ℓ� = �(���),ℓ��(���),��,ℓ� = �
(1 + �)�� �⁄ �ℓ� �⁄ 0

0 (1 + �)� �⁄ ( ��ℓ� �⁄ )
(���) � �

1 0

�
�

���
� ( ��ℓ� �⁄ )  (��)��

(���)
�ℓ� �⁄ 1

�  

 
We then use the fact that µ is a representation and formulae (6) and (7) to obtain that for �� ∈ �� (ℝ�) 

 

� ���(���),��,ℓ�� ���
∑ x�

�
� � = � ��(���),ℓ��(���),��,ℓ�� ���∑ ��

�
� � = (1 + �)� �⁄ ��(���),��,ℓ���� �(1 + �)� �⁄ ��ℓ� �⁄ (∑ ��

�
� )�  

 

= (1 + �)� �⁄ �
���〈( �

ℓ� �⁄
)������

(∑ ��
�

� ),
(�� �)

�
�ℓ� �⁄

(∑ ��
�

� )〉
��((1 + �)� �⁄ ��ℓ� �⁄ (∑ ��

�
� ))  
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= (1 + �)� �⁄ �
���〈(��)��

∑ ��
�

� ,∑ ��
�

� 〉
���(1 + �)� �⁄ ��ℓ� �⁄ (∑ ��

�
� )�                                                                                                      (43) 

 
The intertwining operator and the equivalence for TDS(2).  
 
We shall be concerned with the mapping 
 

Ψ = ℝ ×̇ ℝ� → ℝ ×̇ ℝ�,     ∑ ��
�

� ⟼ �(∑ ��
�

� )�(∑ ��
�

� )�,
(∑ ��

�
� )�

�

�
�,                                                                                                (44) 

 
whose properties are described in the following elementary proposition. Its proof is analogous to that of Proposition 11 and is 
therefore omitted. 
 

Proposition 13. The mapping (44) defines diffeomorphisms from ℝ̇ × ℝ�or from 
 

ℝ̇ × ℝ� onto ℝ̇ × ℝ�and is such thatΨ  (−∑ ��
�

� ) = Ψ  (∑ ��
�

� ). Further, it satisfies: 
 

(a) The Jacobian of Ψ  at ∑ ��
�

�  = ((∑ ��
�

� )�(∑ ��
�

� )�)∈ ℝ̇ × ℝ� (∑ ��
�

� = ((∑ ��
�

� )�(∑ ��
�

� )�)∈ ℝ̇ × ℝ�, respectively ) 

(b)The Jacobian of Ψ �� at ��=((��)�,(��)�) ∈  ℝ̇ × ℝ�  is �� ��(��) = 1 (2(��)�⁄ ), 

(c)Ψ ���(1 + �)���ℓ�(��)� = (1 + �)�ℓ�Ψ
��(�) for every � > −1 and every �� ∈ ℝ̇ × ℝ� 

(d) By 〈������(
∑ ��

�
� ),∑ ��

�
� 〉= 2〈��,Ψ �∑ ��

�
� �〉 for every ∑ ��

�
� ∈ ℝ̇ × ℝ�(∑ ��

�
� = 

(�∑ ��
�

� �
�
,�∑ ��

�
� �

�
)∈ ℝ̇ × ℝ�respectively) and every �� ∈ ℝ�.  

 
The proof of the following theorem is analogous to the proof of Theorem 12 and its details are given in (Cordero et al., 2005). 
 
Theorem 14. The mapping obtained by extending 
 

������� = �2(��)��
�� �⁄

���Ψ
��((��)�,(��)�)�,    ��  ∈ ℝ̇ × ℝ� 

 

to ℝ̇ × ℝ̇as an even function defines an isometry of �����
�  (ℝ�) onto itself that intertwines the representations π and µ, that are 

π(g�) ∘�  = � ∘ µ(g�) for every g� ∈ TDS(2). 
 
Admissible functions for TDS(2).  
 
The reproducibility of TDS(2) follows either by the admissibility condition (16) or directly by the same techniques as in Theorem 
17 with the admissibility conditions stated below, (see e.g.,[20]). 
 
Theorem 15. Let H = TDS(2). The identity 
 

∫ ∑ �〈��,�(ℎ�)��〉�
�

��
�ℎ� = ∑ ��������

�
�                                                                                                                                          (45) 

 
holds for every �� ∈ ��(ℝ�) if and only if the sequence of functions �� satisfies the following two admissibility conditions: 

 

∑ ���� = 4∫ ∫ ∑ ���(∑ ��
�

� )�
�

�
�(∑ ��

�
� )�

(∑ ��
�

� )�
�
 �(∑ ��

�
� )�

�

�ℝ
  

 

= 4∫ ∫ ∑ ���(− ∑ ��
�

� )�
�

�
�(∑ ��

�
� )�

(∑ ��
�

� )�
�
 �(∑ ��

�
� )�

�

�ℝ
                                                                                                                            (46) 

 
and 
 

∫ ∫ ∑ ��(∑ ��
�

� )�j(− ∑ ��
j

� )
���������������

�
�(∑ ��

�
� )�

(∑ ��
�

� )�
�
 �(∑ ��

�
� )�

�

�ℝ
= 0                                                                                                                (47) 

 
Theorem 14 is proved in (Cordero et al., 2015), where examples of admissible wavelets for TDS(2) are also given. 
 
A class of Reproducing Groups Including SIM(2) 
 
The (double cover of) SIM(2) group is one in a family of reproducing groups parametrized by ℝ. For any parameter pair (β + �,β) 
≠  (0, 0), consider the 3-dimensional subgroup of Sp(2, ℝ) 
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�(���,�) = �
��(���)(���) �⁄ (�)�(���) �⁄ 0

Σ
��
�
��(���)(���) �⁄ (�)(���)(���) �⁄ �(���)(���) �⁄ (�)(���)(���) �⁄

� ∶  

 
1 + � ∈ ℝ,�� ∈ ℝ� ⊂ ��(2,ℝ) 
 

where the rotation matrix (�)�� is defined in (29) and the matrix Σ
��
�

in (32). Clearly, 

 

ℎ(���,�)(1 + �,��)= �
� 0

Σ
��
�

1�×   

 

�
��(���)(���) �⁄ (�)�(���) �⁄ 0

0 �(���)(���) �⁄ (�)�(���) �⁄

�  

 

= ��� �
0 0

Σ
��
�

0���� �−
(���)

�
�
(β + ε)�− β� 0

0 − (β + ε)�− ��
��  

 

where as usual J = �
0 1
−1 0

�. Furthermore, Σ
��
�
= (��)�� +  (��)� �, where H = �

0 1
0 −1

�. Thus, the Lie algebra (��)(���)� of 

�(���)� is spanned by 

 

� = �
0 0
� 0

� ,� = �
0 0
� 0

�,   � = −
�

�
�
(β + ε)�− �� 0

0 − (β + ε)�− ��
�  

 
Because of the brackets [H, J ] = 2L and [L, J] = −2H one sees immediately that 
 

�

[�,�]= 0                                     
[�,�]= (β + ε)� − (1 + �)�                   

[�,�]   = β � + (β + ε)�                    

�   

 
According to the classification of three-dimensional Lie algebras (Jacobson, 1979), all (��)(���,�) fall in the class � = {�� : Γ ∈ 

GL(2, ℝ)}, where ��= span{X, Y, Z} has bracket table 
 

�

[�,�]= 0                          
[�,�]= �� + (� + �)�              

[�,�]   = �� + ��                 

� Γ = �
� � + �
� �

�∈ ��(2,ℝ)  

 
In our case 
 

Γ = Γ(���,�) = �
(β + ε) − β

β (β + ε)
�  

 
is nonsingular since det Γ = (β + ε)� + β� ≠  0 because ((β + ε), β) ≠  (0, 0). The isomorphism classes in � are described by Γ, as 
we now explain. First of all, two multiple matrices Γ and λ Γ give rise to the same algebra if λ≠ 0, for if ��= span{X, Y, Z}, then 
the basis {X, Y, λ Z} yields the bracket table that corresponds to λ and generates the same Lie algebra. Thus, �� = ��� if λ ≠  0. The 

isomorphism classes within �� are in one-to-onecorrespondence with the conjugacy classes in PGL(2, ℝ) = GL(2, ℝ)/(ℝ̇ · id). In 

otherwords, two nonmultiple matrices Γ and Γ �correspond to isomorphic Lie algebras if andonly if they are conjugate in GL(2, ℝ). 
It is however an elementary exercise to check that a matrix g� ∈ GL(2, ℝ) conjugates Γ(���,���)into a matrix Γ�,�  of the same type 

if and only if g� is multiple of a rotation matrix in SO(2).  
 
In this case, g�(Γ(���),�)(g

�)�� =Γ(���),�). Therefore, to each point in 

 
[(β + ε):β]= � � �(β + ε),β�:� ≠ 0�in projective space ℝℙ� there corresponds an isomorphism lass in the subclass ℋ  = 

{(��)(���),�: (β + ε,β) ≠  (0, 0)} of �. 

 
There is another issue that must be discussed, in the light of Theorem 7. One of its consequences is that an admissible subgroup of 
Sp(1 + �, ℝ)cannot be unimodular. This fact is proved in [6] and is really a straightforward adaptation of a theorem proved in 
[18]. This explains why we have chosen (β + ε,β) ≠  (0, 0) from the start. Indeed, if ((β + ε),β)) = (0, 0), then ��,�is (two-
dimensional and) nilpotent, hence unimodular, and the constructions that follow cannot possibly lead to admissible groups. 
Furthermore, we must exclude from our parameters all those that correspond to unimodular groups. The modular function ∆ on 
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�(���),� is, as for all Lie group, ∆(∑ ��
�

� ) = det(Ad((∑ ��
�

� )��). If 

 
v = expV is close to the identity, 
∆(v) = det (Ad (v −1 ))= det(Ad(exp(−V )) = det (���� �) = ��(���)�(�� �) 

 
shows that ∆(v) = 1 if and only if tr(ad V ) = 0. Thus, �(���,�)is unimodular if and only if this is true for every V ∈ (��)(���),�. 

From the bracket table we see that tr(ad Z) = 0 and tr(ad X) = tr(ad Y ) = (β + ε). Hence, �(���),�is unimodular if and only if 

� = − � . We summarize this discussion, and other elementary facts, in the proposition that follows. 
 
Proposition 16. The subgroups �(���),�of Sp(2,ℝ) satisfy the following properties: 

 
(a) The product law in �(���),�is explicitly given by:  

(��)(���),� (1+�, ��)(��)(���),�(��, ��) = (��)(���),�((1+�) + ��, ��  + �(���)(���)(�)�(���)�
�  ), (1+�), ��  ∈ ℝ,�� , �� ∈ ℝ� 

(b) The left Haar measure on �(���),� are �(��)(���),�(��, ��) = ���(���)�
�
d�� d��. 

(c) �(���),�is unimodular if and only if � = − � . 

(d) �(���),�and ��,�are conjugate within Sp(2, ℝ) if and only if they are equal, if and only if 

((β + ε),β) = λ(γ, δ), for some λ ≠ 0. 
(e) Each �(���),�is normalized by the natural copy of SO(2) inside Sp(2, ℝ). 

(f) The semidirect product �(�,�) ⋊ SO(2) is (canonically) isomorphic to SIM(2). 

(g) The restriction of the metaplectic representation to �(���),� is given by: 

 

µ((��)(���),�(1+�, ��))��(∑ ��
�

� ) = �(���)(���) �⁄ �
��〈∑ (∑ ��

�
� ),∑ ��

�
���

〉
��(�

(���)(���) �⁄ (�)
�(���)(���) �(∑ ��

�
� )⁄

)                                    (48)  

 
Proof. The statements follow either from the above discussion or from straightforward computations. We content ourselves with a 
couple of comments. By the natural copy of SO(2) inside Sp(2, ℝ) we mean of course 
 

��(2)≃ �(�)�� = �
(�)�� 0

0 (�)��
�∶ �� ∈ [0,2�)�                                                                                                                        (49) 

 
and by (36) one computes immediately (�)��(��)(���),� (1+�, ��) (�)��

�� = (��)(���),� (1+�, (�)����
�), which is the conjugation 

referred to in (e). As for (f), notice that when = 1 − � , �  = 0 and τ = �(���), the matrix (��)(�,�)(τ, ��) is the G0 - component of an 

element in SIM(2).      
 
By (c) and (d), we may assume � = 1- �, and by (e) we may define the family of groups 
 
�� = �(�,�)⋊  SO(2)  ,  � ∈ ℝ. 

 

The elements of ��will be denote d (g�)�  = (ℎ�)� �, where k ∈ SO(2). Also, the left Haar measures are d (g�)�  = d(ℎ�)� dk. In 

the sequel, we shall parametrize K = SO(2) with the angular parameter �� as in (49). We prove next that the groups �βare all 

reproducing. 
 
Theorem 17. The identity 
 

∫ ∑ �〈��,�(��)��〉�
�

�  ��� = ∑ ��������
�

���
                                                                                                                                       (50) 

 
Holds for every �� ∈ ��(ℝ�) if and only if the sequence of functions �� satisfies the following admissibility conditions : 

 

∑ ���� = 2∫ ∑
���(∑ ��

�
� )�

�

�∑ ��
�

� �
��ℝ�
 �(∑ ��

�
� )< ∞ .                                                                                                                                    (51) 

 

∫ ∑ ��� (∑ ��
�

� )�j�− ∑ ��
j

� �
���������������

ℝ�
�(∑ ��

�
� )

�∑ ��
�

� �
� = 0                                                                                                                                       (52) 

 
First, we rove an identity of Plancherel type, (see e.g., (Cordero et al., 2005)).  
Lemma 18. Let Φ  be the mappings defined in (39) and ℎ� ∈ ��(ℝ�) be a function which vanishes outside some annulus c 

<∑ �∑ ��
�

� �� < C, with 0 < c < C < ∞. Then 
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∫ ∑ �∫ ℎ�(∑ ��
�

� )����
〈��,���∑ ��

�
� �〉�(∑ ��

�
� )

ℝ�
��

�

ℝ�
��� = ∫ ∫ ∑ �ℎ��∑ ��

�
� � + ℎ�(− ∑ ��

�
� )�

� �(∑ ��
�

� )

�∑ ��
�

� �
��ℝ

�

�
  

 

Proof. We make the change of variables Φ (∑ ��
�

� ) = ��. By (b) in Proposition 11 

 

∫ ∑ ℎ��∑ ��
�

� �����
〈��,��∑ ��

�
� �〉��∑ ��

�
� �� = ∫ ∫ ∑ �ℎ��∑ ��

�
� � + ℎ��− ∑ ��

�
� ���ℝ

�

�ℝ�
����

〈��,��∑ ��
�

� �〉�(∑ ��
�

� )  

 

∫ ∑ �ℎ�(Φ
������ + ℎ�(− Φ

��(��)�� ����〈�
�,��〉�(∑ x�

�
� )

���

�∑ ��
�

� (��)�
�ℝ�
  

 
By the Plancherel formula we obtain 
 

∫ ∑ �∫ �ℎ�(Φ
������ + ℎ�(− Φ

��(��)�ℝ�
����〈�

�,��〉�(∑ ��
�

� )
���

�∑ ��
�

� �����
��

�

�ℝ�
���   

 

= ∫ ∑ ��ℎ�(Φ
������ + ℎ�(− Φ

��(��)��
�

�

���

�∑ ��
�

� �����
�ℝ�
= ∫ ∫ ∑ �ℎ��∑ ��

�
� � + ℎ�(− ∑ x�

�
� )�

�

�ℝ

�

�

�(∑ ��
�

� )

�∑ ��
�

� �
�  

 
As desired.      
Corollary 19. Let ℎ� be as in Lemma 18 Then 

 

∫ ∑ �∫ ℎ��∑ ��
�

� �
ℝ�

�
���〈�

��
�
(∑ ��

�
� ),∑ ��

�
� 〉

 �(∑ ��
�

� )�

�

�  ���
ℝ�

  

 

= ∫ ∫ ∑ ��ℎ��∑ ��
�

� ��
�
+ �ℎ��− ∑ ��

�
� ��

�
+ 2ℛ� ℎ�(∑ ��

�
� )(− ∑ ��

j
� )

������������
��
�(∑ ��

�
� )

�∑ ��
�

� �
�ℝ

�

�
  

 
Proof of Theorem 17. By (48), we must evaluate 
 

∫ ∑ ���,�(�ℎ����) ��)�
�

�  ��ℎ����� =�(�,�)⋊�
∫ ∫ ∫ ∑ �∫ ���∑ ��

�
� ��(���) �⁄ �

���〈�
��
(∑ ��

�
� ),∑ ��

�
� 〉

 ×
ℝ��ℝ�ℝ

��

�

�j ��
(���) �⁄ (�)�(�(���) ���j⁄ )� � ∑ ��

j
�

������������������������������������������������
�

× (������(���)�(1 + �)�θ�).                                                                                         (53) 

 
Take �� as in Lemma 18 and apply Corollary 19 to the right-hand side of (53) 

 

∫ ∑ ���,� ���ℎ���������

�

�  ��ℎ����� = ∫ ∫ ∫ ∫ ∑ �����∑ ��
�

� ��
�
�(���)��� ��

(���) �⁄ (�)���(���) ����� �(∑ ��
�

� )��
�

+�
�

ℝ�ℝ

��

��(�,�)⋊�

����− ∑ ��
�

� ��
�
�(���)��� �− �

(���) �⁄ (�)���(���) ����� �(∑ ��
�

� )��
�
�  

 

+2ℛ����∑ ��
�

� ��j�− ∑ ��
j

� �
��������������

 ��(���)��  

�−  �(���) �⁄ (�)���(���) ����� �(∑ ��
j

� )��j � �
(���) �⁄ (�)���(���) ���j� �(∑ ��

j
� )�

�����������������������������������������������
  

 

× �
�(∑ ��

j
� )

�∑ ��
j

� �
�  �

��(���) �(1 + �)�θ��                                                                                                                                                  (54) 

 

Suppose at first that �� satisfies the additional properties : �� ((∑ ��
j

� )�,(∑ ��
j

� )� ) = 0 for (∑ ��
j

� )�< 0. Perform now the change of 

variables given by the mappings 
 

(1 + �),θ�) ⟼ �(���)/�(�)���(���) ����� �(∑ ��
�

� )= ��,                                                                                                                     (55) 

 

a well-defined diffeomorphism. One checks that d(1 + �) dθ� = 2��(���)∑ �∑ ��
j

� �
��

� d�� 

and hence 
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∫ ∑ ���,� ���ℎ���������

�

�  ��ℎ����� = ∫ ∫ ∑ ����∑ ��
j

� ��
�

� �∫ ���(�
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�

����
�  ��

��
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�
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j
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= ∑ ���(∑ ��
j

� )�
�

�

� �2∫
�����

���
�

����
�ℝ�
 ����  

 

If �� ((∑ ��
j

� )�,(∑ ��
j

� )�) = 0, for (∑ ��
j

� )�> 0, the same relation holds. This argument shows that if the reproducing formula (50) 

works for all �� ∈ ��(ℝ(���)), then it works for �� vanishings in a half-plane and outside an annulus, so that �� must fulfil (51). 

Take now bounded sequence of functions �� supported in some annulus c <∑ �∑ ��
j

� �� < C. Then 

 

∑ ����,1 + �,∑ ��
j

� �� = 2∑ ℛ����∑ ��
j

� ��j�− ∑ ��
j

� �
��������������

�  ��(���)���−  �
(���) �⁄ (�)�(�(���) ���⁄ )(∑ ��

j
� )�  

 

× ��j � �
(���) �⁄ (�)�(�(���) ���⁄ )�∑ ��

j
� �� (∑ ��

j
� )

�������������������������������������������������������� �

�∑ ��
j

� �
��  

 

is integrable with respect to the measures d(∑ ��
j

� )���(���) d(1 + �) dθ�. By performing again the change of variable (55), and 

using the established values of���, (54) becomes 

 

∫ ∑ ���,� ���ℎ���
������

�

�  ��ℎ���
��

�(�,�)⋊�
= ∑ ���� ����

�

�
+ ∫ ∫ ∫ ∑ ��θ�,(1 + �),∑ ��

�
� �� �(∑ ��

�
� )���(���)�(1 + �)�θ�ℝ�ℝ

��

�
  

 

The reproducing formula (50) implies that the integrals of G(θ�, 1 + �,∑ ��
�

� ) vanishes. On the other hand, using once more the 

change of variable (55) 
 

∫ ∫ ∫ ∑ ��θ�,1 + �,∑ ��
�

� ��� (∑ ��
j

� )���(���)
ℝ�ℝ

��

�
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j
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 �(∑ ��

j
� )� + ∫ ∑ �j(�j)��������

�ℝℝ

�

�
���− �

��
���

����
�  

 
so that (52) must be true as well. 
 
Conversely, assume that (51) and (52) are satisfied. If �� are a functions as in Lemma 18, then all the terms (53) are integrable and 

(50) holds for ��. We conclude by showing that it actually works for all �� ∈ ��(ℝ�). To see this, take �� ∈ ��(ℝ�) and let (��)� be 

a sequences of functions as in Lemma 18 which tends to �� in the �� -norm. Then  �(��)� =〈(��)�,�((g
�)�) ��)〉 is a Cauchy 

sequence on �����,�((g
�)�)�which tends pointwise to  �(��) =〈��,�((g

�)�) ��)〉. Since (50) holds for all (��)�, it follows that it 

also holds for ��.  
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