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 ARTICLE INFO    ABSTRACT 
 

 

Our aim of this paper is to prove two-weight criterions for the Hardy-Littlewood maximal operator 
from weighted Lebesgue spaces into Banach function spaces (BFS). We used boundedness of geometric 
mean operator and sufficient condition on the weights for boundedness of certain sublinear operator 
from weighted Lebesgue spaces into weighted Musielak-Orlicz spaces 
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INTRODUCTION 
 
Operator theory were worked by very mathematicien (Akin and Zeren, 2017). Compactification of weighted Hardyoperator in 
variable exponent Lebesgue spaces has been proven, in (Mamedov et al., 2017). The goal of this investigations were closely 
connected with the found of criterion for validity of boundedness of Hardy-Littlewood maximal operator in BFS. On a two-weight 
criteria for multidimensional Hardytype operator in p-convex Banach function spaces and some application has been proven, in 
(Bandaliev, 2012). In (Cochranand, 1984) was proved the boundedness of Hardyoperator in Orliczspaces. Also, in (Lomakina and 
Stepanov, 1998) the compactness and measure of non-compactness of Hardytype operator in Banach function spaces was proved. 
Wereferethenotion of BFS was introduced in (Luxemburg, 1955). Inthisarticle, weestablish an integral-type necessary and 
sufficient condition on weights which provides the boundedness of the Hardy-Littlewood maximal perator from weighted 
Lebesgue spaces into p-convex weighted BFS.  
 
Auxillary Statements and Assertions 
 
Let(Ω, �) be a complete �-finite measure space. By �� = ��(Ω, �) we denote the collection of all real-valued �-measurable 
functions on Ω. 
 

Definition.1. (Quinsheng, 1993) Let� be a weight on ��. The weighted Hardy-Littlewood maximal operator ℳ� is defined by 
 

ℳ��(�) = sup�:����,�∈�
�

�(�)
∫ |�(�)|�(�)��

�
.  

 

In the case that	� ≡ 1, ℳ� is the usual Hardy-Littlewood maximal operatorℳ , namelyℳ�(�) = sup�:����,�∈�
�

|�|
∫ |�(�)|��

�
. 

Given a BFS,� we can consider its associate space	� ′ consisting of those � ∈ �� that �.� ∈ �� for every � ∈ � with the usual 
order and the norm 
 

‖�‖� ′ = sup�‖�.�‖��
: ‖�‖� ′ ≤ 1�. 

 

Note that	� ′ is a BFS in (Ω, �)and a closed norming subspaces. Let� be a BFS and � be a weight, that is, positive Lebesgue 
measurable and a.e. finite functions on Ω . 
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Let �� = {� ∈ ��: �� ∈ �}. This space is a weighted BFS equipped with the norm ‖�‖��
= ‖��‖�(see[8,9]). 

 
Definition 2. (Schep, 1995) Let� is a BFS. Then � is called �-convex for 1 ≤ � ≤ ∞ if there exists a constant � > 0 such that for 
all ��, … , �� ∈ � 
 

�(∑ |��|��
��� )

�
�� �

�
≤ ��∑ ‖��‖�

��
��� �

�
��
if  1 ≤ � < ∞,or 

 
‖sup�����|��|‖� ≤ � max�����‖��‖�     if   � = ∞. 
 
Similarly	� is called �-concave 1 ≤ � ≤ ∞ if there exists a constant � > 0 such that for all ��, … , �� ∈ � 
 

�∑ ‖��‖�
��

��� �
�

��
≤ � �(∑ |��|��

��� )
�

�� �
�
if    1 ≤ � < ∞,or max�����‖��‖� ≤ �‖sup�����|��|‖� if� = ∞. 

 
Lemma 3. [11] Let1 ≤ � ≤ �(�) ≤ �� < ∞ for all � ∈ Ω� ⊂ ��. Then the inequality 
 

�‖�‖��(Ω�)�
��(.)(Ω�)

≤ ��,� �‖�‖��(Ω�)�
��(Ω�)

 

 

is valid, where��,� = ���Δ�
�

∞
+ ��Δ�

�
∞

+ � �
�

�
−

�

��
�� ���Δ�

�
∞

+ ��Δ�
�

∞
�, 

 
�� = ���	infΩ�

�(�), �� = ���	supΩ�
�(�) ,  Δ� = {(�, �) ∈ Ω� × Ω�: �(�) = �}, Δ� = Ω� × Ω� ∖ Δ�   and �: Ω� × Ω� → �is 

any measurable function such that 
 

�‖�‖��(Ω�)�
��(.)(Ω�)

= ��� �� > 0: ∫ �
‖�(.,�)‖��(Ω�)

�
�

�(�)

�� ≤ 1
Ω�

� < ∞ and	‖�(., �)‖��(Ω�) = �∫ |�(�, �)|���
Ω�

�
�

��

. 

 
Definition 4. (Musielak, 1983;  Diening et al., 2011) Let usΩ ∈ �� a Lebesgue measurable set. A real function �: Ω × [0, ∞) →
[0, ∞) is called a generalized �-functionif it satisfies:  
 

a) �(�, .) is a � -function for all � ∈ Ω,�(�, .): [0, ∞) → [0, ∞)isconvexandsatisfies�(�, 0) = 0, lim �→�� �(�, �) = 0 
b) �: � → �(�, �)is measurableforall� ≥ 0.  

 

Definition 5. (Musielak, 1983Dieningand and Samko, 2007) Let� ∈ Φ and be �� defined by��(�) = ∫ �(�, |�(�)|)��
Ω

,forall� ∈

��(Ω).We put �� = {� ∈ ��(Ω): ��(���) < ∞		���	����		�� > 0}and‖�‖��
= ��� �� > 0: �� �

�

�
� ≤ 1�. 

 
The space	�� is called Musielak-Orliczspace. Let	� be a weight function on Ω, i.e.,� is a non-negative, almost everywhere 
positive function on Ω. In this work we considered the weighted Musielak-Orlicz spaces. We denote��,� = {� ∈ ��(Ω): �� ∈ ��}. 
It is obvious that the norm in this spaces is given by ‖�‖��,�

= ‖��‖��
 

 

Lemma 6. (Bandaliev, 2012) LetΩ� ⊂ �� and Ω� ⊂ ��. Let (�, �) ∈ Ω� × [0, ∞), and �(�, �
�

�� ) ∈ Φ for some 1 ≤ � < ∞. 
Suppose �: Ω� × Ω� → �. Then 
 

�‖�(�, .)‖��(Ω�)�
��

≤ 2
�

�� �‖�(., �)‖��
�

��(Ω�)
is valid. 

 
Definition 7. We say that� ∈ Φ satisfies the ∆�-conditionifthereexists� ≥ 2 such that �(�, 2�) ≤ ��(�, �)forall� ∈ Ω and all 
� > 0. The smallest such � is called the ∆�-constant of � (see (Musielak, 1983)). 
 
Lemma 8. (Bennettand, 1988) Let� ∈ Φand1 < � ≤ �(�) ≤ �� < ∞. Suppose for all � > 0 the condition,�(�, ��) ≤

��(�)�(�, �)	holds, where� ∈ Ω and � > 0. Then a function� satisfies the ∆�-condition, with constant	� = 2��
 (for proof see [3]). 

The following Lemma characterize bounded, sublinear operators from one Musielak-Orlicz spaces to another. 
 

RESULTS 
 
Theorem 1. Let	�(�) and �(�) are weights on ��. Suppose that �� be a �-convex weighted BFSs for1 ≤ � < ∞ on ��. Then the 
inequality, 
 
‖ℳ�‖��

≤ �‖�‖��,�
                                                                                                                                                                         (1) 
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Holds for every� ≥ 0 and for all � ∈ (0,1) if and only if 
 

�(�) = sup
���

� � [�(�)]��′
��

|�|��

�

�

�′

���{|�|��}(.) � � [�(�)]��′
��

|�|�|.|

�

���

�′

��

��

< ∞																																																																									(2) 

 
Moreover, if� > 0 is the best possible constant in (1), then 
 

sup
�����

�′�(�)

(1 − �) ��
�′

(1 − �)
�

�

+
1

�(� − 1)
�

�
��

≤ � ≤ � inf
�����

�(�)

�
1

1 − �
�

�
�

�′

. 

 
Proof of Theorem 1. Sufficiency. Passing to the polar coordinates, we have 
 

�(�) = � � [�(�)]��′
��

|�|�|�|

�

�

�′

= �� ���� � � [�(��)]��′
��

|�|��

�

|�|

�

���

�

�′

 

 
where	�� is the surface element on the unit sphere. Obviously, �(�) = �(|�|), i.e.,�(�) is a radial function. Applying Hölder’s 
inequality for ��(��) spaces and after some standard transformations, we have 

 

‖ℳ�‖��
= � sup

�∈|�|�|.|

1

�|�|< |.|�
�(.) � �(�)��

|�|�|.|

�

�

= � sup
�∈|�|�|.|

1

�|�|< |.|�
�(.) � [�(�)�(�)�(�)][�(�)�(�)]����

|�|�|.|

�

�

 

 

≤ ��(.)‖���‖��(|�|�|.|)‖[��]��‖�
�′(|�|�|.|)�

�
 = ���(.)����{|�|�|.|}(�)‖[��]��‖�

�′(|�|�|.|)�
��

�

�

 

 

= ������{|.|�|�|}(.)‖[��]��‖�
�′(|.|�|�|)�

�[��]
  

 
and we have 
 

������{|.|�|�|}(.)‖[��]��‖�
�′(|.|�|�|)�

�����
≤ � ������{|.|�|�|}(�)‖[��]��‖�

�′(|.|�|�|)�
��[�]

 

= � ���(.)����{|�|�|.|}(�)‖[��]��‖�
�′(|�|�|.|)�

�
�

��

 

																																																																		= � ���� ��(.)�{|�|�|.|}(�)‖[��]��‖�
�′(|�|�|.|)�

�
�

��

 

 
By switching to polar coordinates and after some calculations, we get 
 

‖[��]��‖�
�′(|�|�|�|) = � � [�(|�|)�(�)]��′

|�|�|�|

���

�

�′

= �� ����[�(�)]��′
� � [�(��)]��′

��

|�|��

�

|�|

�

���

�

�′

= �� �� ���� � � [�(��)]��′
��

|�|��

�

�

�

��� � � [�(��)]��′
��

|�|��

�

��

����

|�|

�

���

�

�′

 

																																																						=
1

(1 − �)
�

�′

��
�

��
��� ���� � � [�(��)]��′

��

|�|��

�

�

�

���

���

�

|�|

�

���

�

�′

 

																									=
1

(1 − �)
�

�′

�� ���� � � [�(��)]��′
��

|�|��

�

|�|

�

���

���

�′

=
1

(1 − �)
�

�′

� � [�(�)]��′

|�|�|�|

���

���

�′
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Therefore from the condition (2), we obtain 
 

���� ��(.)�{|�|�|.|}(�)‖[��]��‖�
�′(|�|�|.|)�

�
�

��

 

 

=
1

(1 − �)
�

�′

����

⎣
⎢
⎢
⎢
⎡

� ���{|.|�|�|}� � [�(�)]��′

|�|�|.|

���

���

�′

��

��⎦
⎥
⎥
⎥
⎤

��

��

≤
�(�)

(1 − �)
�

�′

‖��‖��
. 

 

Thus, forall� ∈ (0,1)	,			‖ℳ�‖��
≤ �

�(�)

(���)

�

�′

‖�‖��,�
 

 
Necessity. Let� ∈ ��,�(��), � ≥ 0 and the inequality (1) is valid. Wechoosethe test function as 

 

�(�) ==
�′

1 − �
[�(�)]

�
�

�′�
�
����′

(�)�{|�|��}(�) + [�(|�|)]
�

�

�′�
�
����′

(�)�{|�|��}(�) 

 
where� > 0 is a fixed number and 
 

�(�) = � ���′
(�)��

|�|��

= � ���� � � ���′
(��)��

|�|��

� ��

�

�

 

 
It is obvious that 
 

��

��
= ���� � ���′

(��)��

|�|��

 

 
Again by switching to polar coordinates, from the right hand side of inequality (1) we get that 
 

‖�‖��,�
= � � �

�′

1 − �
�

�

[�(�)]��(���)�����′
(�)��

|�|��

+ � [�(�)]��(���)�����′
(�)��

|�|��

�

�
��

 

= ��
�′

1 − �
�

�

[�(�)]�(���) + � ����

∞

�

[�(�)]��(���)�� � � ���′
(��)��

|�|��

� ���

�
��

 

= ��
�′

1 − �
�

�

[�(�)]�(���) −
1

�(� − 1)
�

�

��
[�(�)]��(���)��

∞

�

�

�
��

 

 

= ��
�′

1 − �
�

�

[�(�)]�(���) −
1

�(� − 1)
�[�(�)]��(���) − � � ���′

(�)��

��

�

��(���)

��

�
��

 

 

≤ ��
�′

1 − �
�

�

+
1

�(� − 1)
�

�
��

[�(�)]
�

�

�′ 

 

= ��
�′

1 − �
�

�

+
1

�(� − 1)
�

�
��

[�(�)]��. 

 
After some calculations, from the left hand side of inequality (1), we have 
 

‖ℳ�‖��
= �sup�∈|�|�|.|

�

�|�|�|.|�
∫ �(�)��

|�|�|.|
�

��

≥ ��{|�|��}sup�∈|�|�|.|
�

�|�|�|.|�
∫ �(�)��

|�|�|.|
�

��
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= ��{|�|��}�
�′

���
∫ [�(�)]

�
�

�′�
�

����′
(�)��

|�|�|�|
+ ∫ [�(�)]

�
�

�′�
�

����′
(�)��

��|�|�|.|
��

��

  

 

= ��{|�|��}�
�′

���
[�(�)]

���

�′ + ∫ ����[�(�)]
�

�

�′�
�

�|.|

�
�∫ ���′

(��)��
|�|��

� ����
��

  

 
 

= ��{|�|��}�
�′

���
[�(�)]

���

�′ +
�′

���
∫

�

��

|.|

�
[�(�)]

���

�′ ����
��

  

 
 

= ��{|�|��}�
�′

���
[�(�)]

���

�′ +
�′

���
�[�(.)]

���

�′ − [�(�)]
���

�′ ���
��

  

 

=
�′

���
��{|�|��}[�(.)]

���

�′ �
��

  

 
Hence,  
 

�′

1 − �
��

�′

1 − �
�

�

+
1

�(� − 1)
�

��
��

[�(�)]
�

�′ ��{|.|��}[�(.)]
���

�′ �
��

≤ 	
�′�(�)

(1 − �) ��
�′

1 − �
�

�

+
1

�(� − 1)
�

�
��

≤ � 

 
For all	� ∈ (0,1). Theorem 1 is proved. 
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