RESEARCH ARTICLE

PRODUCTS OF CONJUGATE SECONDARY NORMAL MATRICES

${ }^{* 1}$ Dr. Muthugobal, B.K.N. and ${ }^{2}$ Dr. Raja, R.

${ }^{1}$ Guest Lecturer in Mathematics, Bharathidasan University Constituent College, Nannilam, India ${ }^{2}$ P.G. Assistant in Mathematics, Govt. Girls Hr. Sec. School, Papanasam, Tamil Nadu, India

ARTICLE INFO

Article History:

Received $27^{\text {th }}$ January, 2018
Received in revised form
$20^{\text {th }}$ February, 2018
Accepted $24^{\text {th }}$ March, 2018
Published online $30^{\text {th }}$ April, 2018

Key words:

Conjugate secondary transpose,
Secondary normal, Secondary orthogonal, Secondary unitary, conjugate normal and con-s-normal.

Abstract

Studying metabolites In this paper, the properties of the products of conjugate secondary normal (con-s-normal) matrices are developed, their relation, in a sense, to s-normal matrices is considered and further results concerning s-normal products are obtained. AMS classification: 15A21, 15A09, 15457.

Copyright © 2018, Dr. Muthugobal and Dr. Raja. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. For $A \in C_{n \times n}$, let $A^{T}, \bar{A}, A^{*}, A^{S}, A^{\theta}$ and A^{-1} denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such as
$\left(A^{\theta}\right)^{\theta}=A,(A+B)^{\theta}=A^{\theta}+B^{\theta},(A B)^{\theta}=B^{\theta} A^{\theta}$. Etc

Definition 1

$$
\text { A matrix } A \in C_{n \times n} \text { is said to be normal if } A A^{*}=A^{*} A \text {. }
$$

Definition 2

A Matrix $A \in C_{n \times n}$ is said to be conjugate normal (con-normal) if $A A^{*}=\overline{A^{*} A}$.

Definition 3

A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $A A^{\theta}=A^{\theta} A$.

Definition 4

A matrix $A \in C_{n \times n}$ is said to be unitary if $A A^{*}=A^{*} A=I$.

Definition 5

A matrix $A \in C_{n \times n}$ is said to be s-unitary if $A A^{\theta}=A^{\theta} A=I$.
Definition 6 [2]
A matrix $A \in C_{n \times n}$ is said to be a conjugate secondary normal matrix (con-s-normal) if $A A^{\theta}=\overline{A^{\theta} A}$ where $A^{\theta}=\bar{A}^{S}$.

[^0]
Properties of Con-s-Normal Matrices

Theorem 1

A matrix A is con-s-normal iff there exists an s-unitary matrix U such that $U A U^{S}$ is a direct sum of non-negative real numbers and of 2×2 matrices of the form: $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ where a and b are non negative real numbers.

Proof

Let A be con-s-normal where $A=P+Q$ where $P=P^{S}$ and $Q=-Q^{S}$. Then $A \bar{A}^{S}=A^{S} \bar{A}$ gives $(P+Q)(\bar{P} s+\bar{Q} s)=\left(P^{s}+Q^{s}\right)(\bar{P}+\bar{Q})$ or $(P+Q)(\bar{P}+\bar{Q})=(P-Q)(\bar{P}+\bar{Q})$ and so: $P \bar{P}+Q \bar{P}-P \bar{Q}-Q \bar{Q}=P \bar{P}-Q \bar{P}+P \bar{Q}-Q \bar{Q}$ or $Q \bar{P}-P \bar{Q}$.

There exists a s-unitary U such that $U S U^{S}=D$ is a secondary diagonal matrix with real, non-negative elements. Therefore $U Q U^{S} \bar{U} \bar{P} \bar{U}^{S}=U P U^{S} \bar{U} \bar{Q} \bar{U}^{S}$ or $W D=D \bar{W}$ where $W=-W^{S}$. Let U be chosen so that D is such that $d_{i} \geqq d_{j} \geqq 0$ for $i<j$ where d_{i} is the $i^{\text {th }}$ secondary diagonal element of D. $W=\left(t_{i j}\right)$, where $t_{j i}=-t_{i j}$ then $t_{i j} d_{j}=d_{i} \bar{t}_{i j}$, for $j>i$, and 3 possibilities may occur : if $d_{j}=d_{i} \neq 0$, then $t_{i j}$ is real; if $d_{j}=d_{i}=0, t_{i j}$ is arbitrary (through $W=-W^{S}$ still holds); and if $d_{j} \neq d_{i}$, then $t_{i j}=0$ for if $t_{i j}=a+i b$ then $(a+i b) d_{j}=d_{i}(a-i b)$ and $a\left(d_{j}-d_{i}\right)=0$ implies $a=0$ and $b\left(d_{i}+d_{j}\right)=0$ implies $d_{i}=-d_{j}$ (which is not possible since the d_{i} are real and non-negative and $d_{j} \neq d_{i}$) or $b=0$ so $t_{i j}=0$. So if $U P U^{S}=d_{1} I_{1} \oplus d_{2} I_{2} \oplus \ldots \oplus d_{k} I_{k}$ where \oplus denotes direct sum, then $U Q U^{S}=T_{1} \oplus T_{2} \oplus \ldots \oplus T_{k}$ where $Q_{i}=-Q_{i}^{S}$ is real and $Q_{K}=-Q_{K}^{S}$ is complex iff $d_{k}=0$. For each real Q_{i} there exists a real-s-orthogonal matrix V_{i} so that $V_{i} T_{i} V_{i}^{S}$ is direct sum of zero matrices and matrices of the form $\left[\begin{array}{rr}0 & b \\ -b & 0\end{array}\right]$ where b is real (Bellman, 1960). If $Q_{K}=-Q_{K}^{S}$ is complex, there exists a complex s-unitary matrix V_{k} such that $V_{k} Q_{k} V_{k} Q$ is a direct sum of matrices of the form [3] so that if $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$ then $V U P U^{S} V^{S}=D$ and $V U Q^{S} U^{S}=F$ the direct sum. Therefore $V U A U^{S} V^{S}=D+F$ this is the desired form. If A and B are two con-s-normal matrices such that $A \bar{B}=B \bar{A}$ then A and B can be simultaneously brought into the above secondary normal form under the same U (with a generalization to a finite number) but not conversely; if A is con-s-normal, $A \bar{A}$ is s-normal in the usual sense, but not conversely; and if A is con-s-normal and \bar{A} is real, there is a real secondary orthogonal matrix which gives the above form. Among properties of con-s-normal matrices not obtained but of subsequent use are the following:

- $\quad A$ is con-s-normal iff $A=H U=U H^{S}$ where H is s-hermitian and U is s-unitary.
- For if $A=H U$ is a polar form of A, then $\bar{U}^{S} H U=K$ is such that $A=H U=U K$ and if $A \bar{A}^{S}=A^{S} A$, then $H^{2}=\left(K^{S}\right)^{2}$ and since this is an s-hermitian matrix with non-negative roots, $H=K^{S}$ and $A=H U=U H^{S}$. The converse is immediate. This same result may be seen as follows. If $U A U^{S}=F$ is the s-normal form in Theorem $\mathbf{1}, F=D_{r} V=V D_{r}$ where D_{r} is real secondary diagonal and V is a direct sum of 1 's block of the form $\left(a^{2}+b^{2}\right)^{-1 / 2}\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ which are s-unitary. Therefore $A=\bar{U}^{S} D_{r} U \bar{U}^{S} V \bar{U}=\bar{U}^{S} V \bar{U} U^{S} D_{r} \bar{U}$ which exhibits the polar form in another guise.
- A is both s-normal and con-s-normal iff $A=H U=U H=U H^{S}$ so $H=H^{S}=\bar{H}^{S}$ so that H is real.
- If $A=H U=U H^{S}$ is con-s-normal, then $U H$ is con-s-normal iff $H U^{2}=U^{2} H$, that is $H U^{2}$ is s-normal. For if $U H$ is con-s-normal, $\quad U H=H^{S} U$ so that $H U^{2}=U H^{S} U=U^{2} H ; \quad$ and \quad if $\quad H U^{2}=U^{2} H$, then $H U U=U H^{S} U=U U H$ or $H^{S} U=U H$.
- A matrix A is con-s-normal, iff A can be written $A=P W=\bar{W} P$ where $P=P^{S}$ and W is s-unitary. If A is con-snormal, form the above $A=\bar{U}^{S} F \bar{U}=\bar{U}^{s} D_{r} \bar{U} U^{S} V \bar{U}=P W=\bar{U}^{S} V U \bar{U}^{s} D_{r} \bar{U}=\bar{W} P$ where $P=\bar{U}^{s} D_{r} \bar{U}$ s-- symmetric and $W=U^{S} V \bar{U}$ is s-unitary. Conversely, if $A=P W=\bar{W} P, A \bar{A}^{S}=P W \bar{W}^{S} \bar{P}^{S}=A^{S} \bar{A}=P^{S} \bar{W}^{S} \bar{P}$. Note that if B is con-s-normal, and if $B=P U$ where $P=P^{S}$ and U is s-unitary, it does not necessarily follow that $B=\bar{U} P$; but it possible to find on P_{1} and U_{I} such that $B=P_{1} U_{1}=\overline{U_{1}} P_{1}$ holds. This may be seen as follows. If $B=P U$ is con-s-normal, Let V bes-unitary such that $V P V^{S}=D$ is secondary diagonal, real and non negative, so that $V B V^{S}=V P V^{S} \bar{V} U V^{S}=D W$ is con-s-normal from which $D W \bar{W} \bar{D}=W^{S} D^{S} \bar{D} \bar{W}$ or since D is real, $W D^{2}=D^{2} W$ and $W D=D W$ since D is non-negative. Then $B=\left(\bar{V}^{S} D V\right)\left(V^{S} W \bar{V}\right)=P U=\left(\bar{V}^{S} W V\right)\left(\bar{V}^{S} D \bar{V}\right)$ which is not necessarily equal to $\bar{U} P=\left(\bar{V}^{S} \bar{W} V\right)\left(\bar{V}^{S} D \bar{V}\right)$ However, if $D=r_{1} I_{1} \oplus r_{2} I_{2} \oplus \ldots \oplus r_{k} I_{k}, r_{i}>r_{j}$ for $i>j$, then $W=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{K}$.

Since each W_{i} is s-unitary, it is con-s-normal and there exist s-unitary X_{i} so that $X_{i} W_{i} X_{i}^{S}=F_{i}$ is in the real s-normal form of
Theorem $\quad 1 \quad$ if $\quad X=X_{1} \oplus X_{2} \oplus \ldots \oplus X_{k}$, then $\quad X V B V^{S} X^{S}=X D W X^{S}=D X W X^{S}=D F=F D \quad$ where $F=F_{1} \oplus F_{2} \oplus \ldots \oplus F_{k}$.

So

$$
\begin{aligned}
B & =\left(\bar{V}^{S} \bar{X}^{S} D \bar{X} \bar{V}\right)\left(V^{S} X^{S} F \bar{X} \bar{V}\right) \\
& =\left(\bar{V}^{S} \bar{X}^{S} F X V\right)\left(\bar{V}^{S} \bar{X}^{S} D \bar{X} \bar{V}\right)=P_{1} U_{1}=\bar{U}_{1}^{S} P_{1} \text { and } \\
P_{1} & =\bar{V}^{S} \bar{X}^{S} D \bar{X} \bar{V} \neq \bar{V}^{S} D \bar{V}=P \text { and } \\
U_{1} & =V^{S} X^{S} F \bar{X} \bar{V} \neq V^{S} W \bar{V}=U .
\end{aligned}
$$

Products of s-Normal Matrices

If A, B and $A B$ are s-normal matrices then $B A$ is s-normal; a necessary and sufficient condition that the product $A B$, of two snormal matrices A and B be s-normal is that each commute with the s-hermitian polar matrix of the other. First a generalization of this theorem is obtained here and then an analog for the con-s-normal case is developed.

Theorem 2

Let A be an s-normal matrix. Then $A B$ and $B A$ are s-normal iff $\left(\bar{A}^{S} A\right) B=B\left(A \bar{A}^{S}\right)$ and $\left(\bar{B}^{S} B\right) A=A\left(B \bar{B}^{S}\right)$. (In a sense, the latter condition might be described as stating that each matrix is s-normal relative to the other).

Proof

If $A B$ and $B A$ are s-normal, Let U be a unitary matrix such that $U A \bar{U}^{S}=D$ is secondary diagonal. $d_{i} \bar{d}_{i} \geq d_{j} \bar{d}_{j} \geq 0$ for $i<j$, and let $U B \bar{U}^{S}=B_{1}=\left(b_{i j}\right)$. From $A B \bar{B}^{S} \bar{A}^{S}=\bar{B}^{S} \bar{A}^{S} A B$ it follows that $D B_{1} \bar{B}_{1}^{S} \bar{D}^{S}=\bar{B}^{S} \bar{D} D B_{1}$; by equating secondary diagonal elements it follows that $\sum_{j=1}^{n} d_{i} \bar{d}_{i} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{j i} \bar{b}_{j i}$ for $i=1,2 \ldots n$. Similarly from $B A \bar{A}^{S} \bar{B}^{S}=\bar{A}^{S} \bar{B}^{S} B A$ follows $\quad B_{1} D \bar{D} \bar{B}_{1}^{S}=\bar{D} \bar{B}_{1}^{S} B_{1} D$ and $\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} \bar{d}_{i} d_{i} \bar{b}_{j i} b_{j i}$. Let $i=1$ in each of these equations So that $\sum_{j=1}^{n} d_{1} \bar{d}_{1} b_{1 j} \bar{b}_{1 j}=\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{j 1} \bar{b}_{j 1}$ and $\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{1 j} \bar{b}_{1 j}=\sum_{j=1}^{n} \bar{d}_{1} d_{1} \bar{b}_{j 1} b_{j 1} \quad$ from which follows
$\sum_{j=1}^{n}\left(d_{1} \bar{d}_{1}-d_{j} \bar{d}_{j}\right) b_{1 j} \bar{b}_{1 j}=\sum_{j=1}^{n}\left(d_{j} \bar{d}_{j}-d_{1} \bar{d}_{1}\right) d_{j 1} \overline{b_{j 1}}$
so that

$$
\sum_{j=1}^{n}\left(d_{1} \bar{d}_{1}-d_{j} \bar{d}_{j}\right)\left(b_{1 j} \overline{b_{1 j}}+b_{j 1} \overline{b_{j 1}}\right)=0 .
$$

Let $d_{1} \overline{d_{1}}=d_{2} \overline{d_{2}}=\ldots=d_{l} \overline{d_{l}}>d_{l+1} d_{l+1}$, then $b_{1 j} \overline{b_{1 j}}+b_{j 1} \overline{b_{j 1}}=0$ for $j=l+1, l+2, \ldots n$ since $d_{1} \overline{d_{1}}-d_{j} \overline{d_{j}}$ is zero or positive and is latter for $j>l$. So $b_{1 j}=0$ and $b_{j 1}=0$ for $j=l+1, l+2, \ldots n$. For $i=2, \ldots . . l$ in turn it follows that $b_{i j}=0$ and $b_{j i}=0$. For $i=1,2, \ldots . l$ and for $j=l+1, l+2 \ldots . n$. Let $U A \bar{U}^{S}=D=r_{1} D_{1} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{S} D_{S}$ where the r_{i} are real $r_{i}>r_{j}$ for $i<j$ and the D_{i} are s-unitary Then by repeating the above process it follows that $U B \bar{U}^{S}=B_{1}=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{S}$ is conformable to D. It follows from the given conditions that $r_{i} D_{i} C \bar{C}_{i}^{S} \bar{D}_{i} r_{i}=\bar{C}_{i}^{S}\left(r_{i} \bar{D}_{i}\right)\left(D_{i} r_{i}\right) C_{i}$ and $C_{i} r_{i} D_{i} \bar{D}_{i} r_{i} \bar{C}_{i}^{S}=r_{i} \bar{D}_{i} \bar{C}_{i}^{S} C_{i} D_{i} r_{i}$ or that $D_{i} C_{\mathrm{i}} \overline{\mathrm{C}}_{i}^{S}=\overline{\mathrm{C}}_{i}^{S} \mathrm{C}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}$ and $D_{i} C_{\mathrm{i}} \overline{\mathrm{C}}_{i}^{S}=\overline{\mathrm{C}}_{i}^{S} \mathrm{C}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}$ if $r_{i}>0$. If
$r_{s}=0, D_{s}$ is arbitrary insofar as D is concerned and so may be chosen so that $D_{S} C_{S} \bar{C}_{S}^{S}=\bar{C}_{S}^{S} C_{S} D_{S}$ in which case D_{s} may not be secondary diagonal. But whether or not this is done, it follows that $D B_{1} \bar{B}_{1}^{S}=\bar{B}_{1}^{s} B_{1} D$ and that $B_{1} D \bar{D}^{s}=\bar{D}^{s} D B_{1}$ so that $A\left(B \bar{B}^{S}\right)=\left(\bar{B}^{S} B\right) A$ and $B\left(\bar{A}^{S}\right)=\left(\bar{A}^{S} A\right) B$. The converse is immediate. It may be noted that if the roots of A are all distinct in absolute value, B must be s -normal. The following further clarifies the situation.

Theorem 3

Let $A=L W=W L$ be the polar form of the s-normal matrix A. Then $A B$ and $B A$ are
s-normal iff $B=N \bar{W}^{S}$ where N is s-normal and $L N=N L$.

Proof

In the proof of the above theorem, let $C_{i}=H_{i} U_{i}=U_{i} K_{i}$ be polar forms of the C_{i}. Then $\bar{U}_{i}^{s} H_{i} U_{i}=K_{i}$ so that $\bar{U}_{i}^{S} C_{i} \bar{C}_{i}^{S} U_{i}=\bar{C}_{i}^{S} C_{i}$ or $\bar{U}_{i}^{S} C_{i} \bar{C}_{i}^{S}=\bar{C}_{i}^{S} C_{i} \bar{U}_{i}^{S}$. Also, from the above $D_{i} C_{i} \bar{C}_{i}^{S}=\bar{C}_{i}^{S} C_{i} D_{i}$.

Let $R_{i}=\bar{D}_{i} \overline{\mathrm{U}}_{i}^{S}$ then $R_{i} C_{i} \bar{C}_{i}^{S}=\bar{D}_{i} \bar{U}_{i}^{S} C_{i} \bar{C}_{i}^{S}=\bar{D}_{i} \bar{C}_{i}^{S} C_{i} \bar{U}_{i}^{S}=C_{i} \bar{C}_{i}^{S} \bar{D}_{i} \bar{U}_{i}^{S}=C_{i} \bar{C}_{i}^{S} R_{i}$ where R_{i} is s-unitary (if $r_{s}=0, D_{S}$ may be chosen $=\bar{U}_{S}^{S}$ as described above). So $R_{i} H_{i}^{2}=H_{i}^{2} R_{i}$ and since H_{i} has positive or zero roots, $R_{i} H_{i}=H_{i} R_{i}$ and so $H_{i} \bar{R}_{i}^{S}=\bar{R}_{i}^{S} H_{i}$. Then $A=\bar{U}^{S} D U=\bar{U}^{S} D_{r} U \bar{U}^{S} D_{U} U=L W=W L$ and

$$
\begin{aligned}
B & =\bar{U}^{S} B_{1} U=\bar{U}^{S}\left(C_{1} \oplus C_{2} \oplus \ldots \oplus C_{S}\right) U \\
& =\bar{U}^{S}\left(H_{1} U_{1} \oplus H_{2} U_{2} \oplus \ldots \oplus H_{S} C_{S}\right) U \\
& =\bar{U}^{S}\left(H_{1} \bar{R}_{1}^{S} \overline{D_{1}} \oplus H_{2} \bar{R}_{2}^{S} \overline{D_{2}} \oplus \ldots \oplus H_{S} \bar{R}_{S}^{S} \overline{D_{S}}\right) U \\
& =N W C^{-S}
\end{aligned}
$$

where $N=\bar{U}^{S}\left(H_{1} \bar{R}_{1}^{S} \oplus H_{2} \bar{R}_{2}^{S} \oplus \ldots \oplus H_{S} \bar{R}^{S}\right) U$ (which is s-normal since the s-hermitian H_{i} and s-unitary \bar{R}_{i}^{S} commute) and $\bar{W}^{S}=\bar{U}^{S}\left(\bar{D}_{1} \oplus \bar{D}_{2} \oplus \ldots \oplus \bar{D}_{S}\right) U$. It is evident that $L N=N L$.

Conversely, if $A=L W=W L$ and $B=N \bar{W}^{S}$ as described, then $A B=W L N \bar{W}^{S}$ which is obviously s-normal as is $B A=N \bar{W}^{S} W L=N L$. It is easy seen that $B=N \bar{W}^{S}$ is s-normal iff $N \bar{W}^{S}=\bar{W}^{S} N$. if $B=N \bar{W}^{S}=(H R) \bar{W}^{S}$ is con-snormal; then $B=H\left(R \bar{W}^{S}\right)=\left(R \bar{W}^{S}\right) H^{S}=R H \bar{W}^{S} \quad$ (form property (a)) so $\bar{W}^{S} H^{S}=H \bar{W}^{S}$ or $W H=H^{S} W$ and $W\left(B \bar{B}^{S}\right)=\left(\bar{B}^{S} B\right) W$.

If A is s-normal and B is con-s-normal then $A B$ is s-normal, it does not necessarily follow that $B A$ is s-normal though it can occur. For example, if $B=H U=U H^{S}$ is
con-s-normal and if $A=\bar{U}^{S}$ then $A B=\bar{U}^{S} U H^{S}$ and $B A=H U \bar{U}^{S}=H$ are both s-normal. But the following is an example in which $A B$ is s-normal but not $B A$. Let $B=H U=U H^{S}$ be
con-s-normal but not s-normal (i.e, H is not real by property (b)) and let H be non-singular. Let $A=H^{-1}$ is s-hermitian (So snormal) and not con-s-normal (since H^{-1} is not real). Then $A B=H^{-1} H U=U$ is s-normal if $B A$ were also s-normal, then by the above theorem $\left(\bar{A}^{S} A\right) B=B\left(A \bar{A}^{S}\right)$ and $\left(\bar{B}^{S} B\right) A=A\left(B \bar{B}^{S}\right)$. But $\left(\bar{B}^{S} B\right) A=\left(H^{s}\right)^{2} H^{-1}$ and $A\left(B \bar{B}^{S}\right)=\left(\bar{H}^{-1}\right)\left(H^{2}\right)$ and if these were equal, $\left(H^{s}\right)^{2}=H^{2}$ would follow which means that $H^{2}=\left(H^{s}\right)^{2}=\left(\bar{H}^{s}\right)^{2}$ so that H^{2} real. But this is not possible for if $H=V D \bar{V}^{S}$ where D is secondary diagonal with positive real elements (since H is non singular), then $H^{2}=V D^{2} \bar{V}^{S}=\bar{V} D V^{S}$ if H^{2} is real so that $V^{S} V D^{2}=D^{2} V^{S} V$ so $V^{S} V D=D V^{S} V$ so $V D \bar{V}^{S}=\bar{V} D V^{S}=H$ is real which contradicts the above assumption.

Theorem 4

If A and B are con-s-normal and if $A B$ is s-normal then $B A$ is s-normal.

Proof

Let U be a s-unitary matrix such that $U A U^{S}=F$ is the s-normal from described in Theorem 1 and where $F \bar{F}^{S}=F F^{S}=r_{1}^{2} I_{1} \oplus r_{2}^{2} I_{2} \oplus \ldots \oplus r_{k}^{2} I_{k}$ which is real s-diagonal with $r_{1}^{2}>r_{2}^{2}>\ldots>r_{k}^{2} \geqq 0$ There r_{i}^{2} may be either the squares of secondary diagonal elements of F or they may arise when matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ are squared. Assume that any of the latter whose r_{i}^{2} are equal are arranged first in a given block followed by any secondary diagonal elements whose square is the same r_{i}^{2}.

Let $\bar{U} B \bar{U}^{S}=B_{1}$ which is con-s-normal and then $U A U^{S} \bar{U} B \bar{U}^{S}=F B_{1}$ is s-normal Let V be the s-unitary matrix.

$$
V=\left[\begin{array}{cc}
\sqrt{1 / 2} & i \sqrt{1 / 2} \\
i \sqrt{1 / 2} & \sqrt{1 / 2}
\end{array}\right]
$$

Then the following matrix relation holds, independent of a and b :

$$
V\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \bar{V}^{s}=\left[\begin{array}{cc}
a-b i & 0 \\
0 & a+b i
\end{array}\right]
$$

Let $F=F_{1} \oplus F_{2} \oplus \ldots \oplus F_{k}$ where the direct sum is conformable to that of \bar{F}^{S} given above (i.e, $\left.F_{i} \bar{F}_{i}^{S}=r_{i}^{2} I_{i}\right)$ and consider $F_{1}=G_{1} \oplus G_{2} \oplus \ldots \oplus G_{i} \oplus r_{i} I$ where each G_{i} is 2 x 2 as described above and I is an identity matrix of proper size. Let $W_{1}=V \oplus V \oplus \ldots \oplus V \oplus I$ be conformable to F_{1}; define W_{i} for each F_{i} in like manner and let $W=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{K}$. If
$r_{k}=0, W_{k}=I$. Then $W F \bar{W}^{S}=D$ is complex secondary diagonal, where if d_{i} is the $i^{\text {th }}$ secondary diagonal element $d_{i} \bar{d}_{i} \geqq d_{i+1} \bar{d}_{i+1}$. Then $W\left(U A U^{S}\right) \bar{W}^{S} W\left(\bar{U} B \bar{U}^{S}\right) \bar{W}^{S}=\left(W F \bar{W}^{S}\right)\left(W B_{1} \bar{W}^{S}\right)=D B_{2}$ is s-normal for $B_{2}=W B_{1} \bar{W}^{S}$ (or $B_{1}=\bar{W}^{S} B_{2} W$). Since B_{1} is con-s-normal, $B_{1} \bar{B}_{1}^{S}=B_{1}^{S} \bar{B}_{1}$ so that $\bar{W}^{S} B_{2} W \bar{W}^{s} \bar{B}_{2}^{S} W=W^{S} B_{2}^{S} \bar{W} W^{S} \bar{B}_{2} W$ or that $B_{2} \bar{B}_{2}^{S} W W^{S}=W W^{S} B_{2}^{S} \bar{B}_{2}$.Now $V V^{S}$ is a matrix of the form $\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$. So that $W W^{S}$ is a direct sum of matrices of this form and one's.

Let $B_{2}=\left(b_{i j}\right)$ and consider $\overline{\left(W W^{S}\right)^{S}} B_{2} \bar{B}_{2}^{S}\left(W W^{S}\right)=B_{2}^{S} \bar{B}_{2}$. Let $B_{2} \bar{B}_{2}^{S}=\left(c_{i j}\right), \quad B_{2}^{S} \bar{B}_{2}=\left(f_{i j}\right) \cdot c_{i j}$ and $f_{i j}$ are identifiable with the both batrices being s-hermitian. Consider two cases:

- If $d_{1} \bar{d}_{1}=d_{j} \bar{d}_{j}$ for all j (where d_{j} is the $j^{\text {th }}$ secondary diagonal element of D), then $D=K D_{u}$ where D_{u} is s-unitary diagonal. Since $W F B_{1} \bar{W}^{S}=D B_{2}=K D_{u} B_{2}=D_{u}\left(K B_{2}\right)$ is s-normal, then $\bar{D}_{u}\left(D_{u} B_{2} K\right) D_{u}=B_{2} D=W B_{1} F \bar{W}^{S}$ is s-normal, as is $B_{1} F=\bar{U} B \bar{U}^{S} U A U^{S}$ so $B A$ is s-normal.
- If $d_{1} \bar{d}_{1} \neq d_{j} \bar{d}_{j}$ for some j, let $d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2} \ldots=d_{l} \bar{d}_{l}$ for $1 \leq l<n$ (so that $d_{l} \bar{d}_{l}>d_{l+1} \bar{d}_{l+1}$).
- Suppose $F_{1}=G_{1} \oplus G_{2} \oplus r_{1} I_{1}$ where I_{l} is the 2×2 matrix (The general case will be seen to follow from this example). From $\left(\overline{W W^{s}}\right)^{s} B_{2} \bar{B}_{2}^{S}\left(w w^{s}\right)=B_{2}^{S} \bar{B}_{2}$ and the fact that $\quad W_{l}=V \oplus V \oplus I_{1}$ it follows that $C_{11}=f_{22}, C_{22}=f_{l 1}, C_{33}=f_{44}$, $C_{44}=f_{33}, C_{55}=f_{55}, C_{66}=f_{66}$ (and $\bar{C}_{12}=f_{12} \cdot \bar{C}_{34}=f_{34}$ etc) there equalities supply the following relation (where the summation is over $i=1$ to n).
$C_{11}=\sum b_{1 i} \bar{b}_{1 i}=\sum b_{i 2} \bar{b}_{i 2}=f_{22} ;$
$C_{22}=\sum b_{2 i} \bar{b}_{i 2}=\sum b_{i 1} \bar{b}_{i 1}=f_{11}$;
$C_{33}=\sum b_{3 i} \bar{b}_{3 i}=\sum b_{i 4} \bar{b}_{i 4}=f_{44} ;$
$C_{44}=\sum b_{4 i} \bar{b}_{4 i}=\sum b_{i 3} \bar{b}_{i 3}=f_{33} ;$
$C_{55}=\sum b_{5 i} \bar{b}_{5 i}=\sum b_{i 5} \bar{b}_{i 5}=f_{55} ;$
$C_{66}=\sum b_{6 i} \bar{b}_{6 i}=\sum b_{i 6} \bar{b}_{i 6}=f_{66}$;
$D B_{2}$ is s-normal so that the following relations also hold:
$d_{1} \bar{d}_{1}, \sum b_{1 i} \bar{b}_{1 i}=\sum d_{i} \bar{d}_{i} b_{i 1} \bar{b}_{i 1} ;$
$d_{1} \bar{d}_{2}, \sum b_{2 i} \bar{b}_{2 i}=\sum d_{i} \bar{d}_{i} b_{i 2} \bar{b}_{i 2} ;$
$d_{3} \bar{d}_{3}, \sum b_{3 i} \bar{b}_{3 i}=\sum d_{i} \bar{d}_{i} b_{i 3} \bar{b}_{i 3}$;
$d_{4} \bar{d}_{4}, \sum b_{4 i} \bar{b}_{4 i}=\sum d_{i} \bar{d}_{i} b_{i 4} \bar{b}_{i 4}$;
$d_{5} \bar{d}_{5}, \sum b_{5 i} \bar{b}_{5 i}=\sum d_{i} \bar{d}_{i} b_{i 5} \bar{b}_{i 5}$;
$d_{6} \bar{d}_{6}, \sum b_{6 i} \bar{b}_{6 i}=\sum d_{i} \bar{d}_{i} b_{i 6} \bar{b}_{i 6}$;
Since $d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2}$ on combining the first 2 relation in each of these sets,
$d_{1} \bar{d}_{1}\left(\sum b_{1 i} \overline{b_{1 i}}+\sum b_{2 i} \overline{b_{2 i}}\right)=d_{1} \bar{d}_{1}\left(\sum b_{i 1} \bar{b}_{i 1}+\sum b_{i 2} \bar{b}_{i 2}\right)=\sum d_{i} \overline{d_{i}}\left(b_{i 1} \overline{b_{i 1}}+b_{i 2} \overline{b_{i 2}}\right)$ so that
$\sum\left(d_{1} \bar{d}_{1}-d_{i} \bar{d}_{i}\right)\left(b_{i 1} \bar{b}_{i 1}+b_{i 2} \bar{b}_{i 2}\right)=0 \quad d_{1} \bar{d}_{1}=d_{j} \bar{d}_{j} \quad$ for $\quad j=1,2 \ldots 6$ but for j beyond $6, \quad d_{1} \bar{d}_{1}=d_{j} \bar{d}_{j}>0 \quad$ or $b_{i 1} \overline{b_{i 1}}+b_{i 2} \overline{b_{i 2}}=0$ or $b_{i 1}=0$ and $b_{i 2}=0$ for $i=7,8 \ldots . n$ similarly, $b_{i 3}=0$ and $b_{i 4}=0$ for $i>6$ the third relation in each set give $b_{i 5}=0$ and $b_{i 6}=0$ for $i>6$.

On adding all 6 relation in the first set,

$$
\sum_{i, j=1}^{6} b_{i j} \bar{b}_{i j}+\sum_{i=1}^{6} \sum_{j=7}^{n} b_{i j} \bar{b}_{i j}=\sum_{i, j=1}^{6} b_{i j} \bar{b}_{i j}+\sum_{i=7}^{n} \sum_{j=1}^{6} b_{i j} \bar{b}_{i j}
$$

and on canceling the first summations on each side,

$$
\sum_{i=1}^{6} \sum_{j=7}^{n} b_{i j} \bar{b}_{i j}=\sum_{i=7}^{n} \sum_{j=1}^{6} b_{i j} \bar{b}_{i j} .
$$

But the right side is zero from the above, so the left side is 0 and so $b_{i j}=0$ for $i=1,2 \ldots 6$ and $j>6$. From this it is evident that this procedure may be repeated and that if $\quad D=r_{1} D_{1} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{k} D_{k}$. Where the D_{i} are s-unitary and the r_{i} non-negative real, as above, then $B_{2}=C_{l} \oplus C_{2} \oplus \ldots \oplus C_{k}$ Conformable to D then $r_{i} D_{i} C_{i}$ is s-normal so $\bar{D}_{i}^{S}\left(D_{i} C_{i} r_{i}\right) D_{i}=C_{i} r_{i} D_{i}$ is s-normal so $B_{2} D$ is s-normal. So $B_{l} F$ and so $\bar{U} B \bar{U}^{S} U A U^{S}$ and $B A$.

Theorem 5

If A and B are con-s-normal then $A B$ is s-normal iff $\bar{A}^{S} A B=B A \bar{A}^{S}$ and $A B \bar{B}^{S}=\bar{B}^{S} B A$ (ie, iff each is s-normal relative to the other).

Proof

If $A B$ is s-normal, from the above $\bar{D}^{S} D B_{2}=B_{2} D \bar{D}^{S}$ so that $\bar{F}^{S} F B_{1}=B_{1} F \bar{F}^{S}$ or $\bar{A}^{S} A B=B A \bar{A}^{S}$.
Similarly $D B_{2}$ is s-normal, $D B_{2}{\overline{B_{2}}}^{S} \bar{D}=\bar{B}_{2}^{S} \bar{D} D B_{2}$ so $D B_{2} \bar{B}_{2}^{S}=\bar{B}_{2}^{S} B_{2} D$ or $F B_{1} \bar{B}_{1}^{S}=\bar{B}_{1}^{S} B_{1} F$ or $A B \bar{B}^{S}=\bar{B}^{S} B A$. the converse is directly verifiable.

Theorem 6

Let A and B be con-s-normal, if $A B$ is s-normal, then $A=L W=W L^{S}$ (with L s-hermitian and W s-unitary) and $B=N \bar{W}^{S}$. Where N is s-normal and $L^{S} N=N L^{S}$; and conversely.

Proof

As above, let $U A U^{S}=F=\bar{W}^{S} D W=\bar{w}^{S} D_{r} w \bar{w}^{S} D_{u} w$ where D_{r} and D_{u} are the s-hermitian and s-unitary polar matrices of $D)$ and $\bar{U} B \bar{U}^{S}=B_{1}=\bar{W}^{S} B_{2} W=\bar{W}^{S}\left(C_{1} \oplus \ldots \oplus C_{K}\right) W$. As in the proof of Theorem 3 if follows that for all $i, D_{i} C_{i} \bar{C}_{i}^{S}=\bar{C}_{i}^{S} C_{i} D_{i}$ and $\bar{U}_{i}^{S} C_{i} \bar{C}_{i}^{S}=\bar{C}_{i}^{S} C_{i} \bar{U}_{i}^{S}$ with U_{i} as defined there, so that when $R_{i}=\bar{D}_{i} \bar{U}_{i}^{S}$ (where D, here, $=r_{l} D_{l} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{k} D_{k}$ as earlier) then $C_{i}=H_{i} U_{i}=H_{i} \bar{R}_{i}^{S} \bar{D}_{i}$ with $H_{i} R_{i}=R_{i} H_{i}$.

Then since, $W D_{r}=D_{r} W, U A U^{S}=\bar{W}^{S} D_{r} w \bar{W}^{S} D_{u} w=D_{r}\left(\bar{W}^{S} D_{u} w\right)$ and

$$
A=\left(\bar{U}^{S} D_{r} U\right)\left(\bar{U}^{S} \bar{w}^{S} D_{u} w \bar{U}\right)=L X
$$

$$
=\left(\bar{U} s-s D_{u} w \bar{U}\right)\left(U^{S} D_{r} \bar{U}\right)=X L^{S}
$$

with $L=\bar{U}^{S} D_{r} U$ s-hermitian and $X=\bar{U} S \bar{w}^{S} D_{u} w \bar{U}$ s-unitary.

Also, $\quad \bar{U} B \bar{U}^{S}=\bar{w}^{S}\left(H_{1} \bar{R}_{1}^{S} \bar{D}_{1} \oplus H_{2} \bar{R}_{2}^{S} \bar{D}_{2} \oplus \ldots \oplus H_{k} \bar{R}_{k}^{S} \bar{D}_{k}\right) w=N_{1} Y$
Where $N_{1}=\bar{w} S\left(H_{1} \bar{R}_{1}^{S} \oplus H_{2} \bar{R}_{2}^{S} \oplus \ldots \oplus H_{k} \bar{R}_{k}^{S}\right) w \quad$ is s-normal \quad and $Y=\bar{w} S\left(\bar{D}_{1} \oplus \bar{D}_{2} \oplus \ldots \oplus \bar{D}_{k}\right) w$ is s-unitary; then $B=U^{S} N_{1} Y U=\left(U^{S} N_{1} \bar{U}\right)\left(U^{S} Y U\right)=N \bar{X} S$.

Where $N=U^{S} N_{1} \bar{U}$ is s-normal and $\bar{X}^{S}=U^{S} Y U=U^{S} \bar{W}^{S} \overline{D_{u}} w U$. Also
$L^{S} N=N L^{S} \sin c e D_{r} N_{1}=N_{1} D_{r}, \bar{D}_{r} N_{1}=N_{1} \bar{D}_{r}$ so $\left(\bar{U} \bar{L} U^{s}\right)\left(\bar{U} N U^{s}\right)=\left(\bar{U} N U^{s}\right)\left(\bar{U} \bar{L} U^{S}\right)$ so $L^{S} N=N L^{S}$.
The converse is immediate.

Products of Con-s-Normal Matrices

It is possible if A is s-normal and B con-s-normal that $A B$ is con-s-normal. For example, any con-s-normal matrix $C=H U=U H^{S}$ is such a product with $A=H$ and $B=U$. Or if $C=H U=U H^{S}$ and $A=H$, then $A C=H^{2} U=H U H^{S}=U\left(H^{S}\right)^{2}$ is con-s-normal. The following theorems clarify this matter.

Theorem 7

If A is s-normal and B is con-s-normal then $A B$ is con-s-normal iff
$A B \bar{B}^{S}=B \bar{B}^{S} A$ and $\bar{B} A \bar{A}^{S}=A^{S} \bar{A} \bar{B}\left(\operatorname{orB} \bar{A} A^{S}=\bar{A}^{S} A B\right)$.
(If one were to define N is s-normal with respect to M ' to mean $N \bar{N}^{S} M=M \bar{N}^{S} N$ and Q is con-s-normal with respect to P to mean $P Q \bar{Q}^{S}=Q^{S} \bar{Q} P$ the above theorem would say that if A is s-normal and B is con-s-normal then $A B$ is con-s-normal iff (con-s-normal) B is s-normal with respect to A and (s-normal) A is con-s-normal with respect to \bar{B}).

Proof

If the latter condition hold, then; $(A B)(\overline{A B})^{S}=A B \bar{B}^{S} \bar{A}^{S}=B \bar{B}^{S} A \bar{A}^{S}$ and $(A B)^{S}(\overline{A B})=B^{S} A^{S} \bar{A} \bar{B}=B^{S} \bar{B} A \bar{A}^{S}$ which are equal.

Conversely, let $A B$ be con-s-normal and let $U A \bar{U}^{S}=D=d_{1} I_{1} \oplus d_{2} I_{2} \oplus \ldots \oplus d_{k} I_{k}$ where $d_{i} \bar{d}_{i}>d_{j} \bar{d}_{j}, i>j$.
Let $U B^{S} U^{S}=B_{1}=(b i j)$,
if $(A B)(\overline{A B})^{S}=A B \bar{B}^{S} \bar{A}^{S}=A B^{S} \bar{B} \bar{A}^{S}=(A B)^{S}(\overline{A B})$
$=B^{S} A^{S} \bar{A} \bar{B}=B^{S} \bar{A} A^{S} \bar{B}$,
then $\quad\left(U A \bar{U}^{S}\right)\left(U B^{S} U^{S} \bar{U} \bar{B} \bar{U}^{S}\right)\left(U \bar{A}^{S} \bar{U}^{S}\right)=\left(U B^{S} U^{S}\right)\left(\bar{U} \bar{A} U^{S} \bar{U} A^{S} U^{S}\right)\left(\bar{U} \bar{B} \bar{U}^{S}\right)$
So that $D B_{1} \bar{B}_{1}^{S} \bar{D}^{S}=B_{1} \bar{D} D \bar{B}_{1}^{S}$.
Equating secondary diagonal elements on each side of this relation, we get

$$
\sum_{j=1}^{n} d_{i} \bar{d}_{i} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{i j} \bar{b}_{i j}, i=1,2, \ldots n
$$

or
$\sum_{j=1}^{n}\left(d_{i} \bar{d}_{i}-d_{j} \bar{d}_{j}\right) b_{i j} \bar{b}_{i j}=0$.
Let $d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2}=\ldots d_{l} \bar{d}_{l}>d_{l+1} \bar{d}_{l+1}$ then $b_{i j}=0$ for $i=1,2 \ldots l$ and $j=l+1, l+2 \ldots n$ since B_{l} is con-s-normal,
$\sum_{j=1}^{n} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} b_{j i} \bar{b}_{\text {ji }}$ for $i=1,2, \ldots n$ on adding the first l of these equation and canceling, $b_{i j}=0$ for $\mathrm{i}=l+1, l+2 \ldots \mathrm{n}$ and $\mathrm{j}=1,2, \ldots, l$. In this manner if $D=r_{1} D_{1} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{t} D_{t}$ with $r_{i}>r_{i+1}$ and D_{i} s-unitary, then $B_{1}=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{t}$ conformable to D.

Since $r_{i} D_{i} \bar{D}_{i}^{S} r_{i} \bar{C}_{i}^{S}=r_{i}^{2} C_{i}^{S}=C_{i}^{S} r_{i}^{2}=C_{i}^{S} r_{i} D_{i} \bar{D}_{i}^{S} r_{i}$, for all $i, D \bar{D}^{s} B_{1}^{S}=B_{1}^{S} D \bar{D}^{s}$ and so
$\bar{U}^{S} D \bar{D}^{S} U \bar{U}^{S} B_{1}^{S} \bar{U}=\bar{U}^{S} B_{1}^{S} \bar{U} U^{S} D \bar{D}^{S} \bar{U}$ or $A \bar{A}^{S} B=B A^{S} \bar{A}$ or $\bar{A}^{S} A B=B A^{S} \bar{A}$ or $A^{S} \bar{A} \bar{B}=\bar{B} A \bar{A}^{S}$.
Also, $D\left(B_{1} \bar{B}_{1}^{S} \bar{D}^{S}\right)=B_{1} \bar{D} D \bar{B}_{1}^{S}=\bar{D} D \bar{B}_{1}^{S}=D\left(\bar{D} B_{1} \bar{B}_{1}^{S}\right)$ so that $C_{i} \bar{C}_{i}^{S}\left(r_{i} \bar{D}_{i}\right)=\left(r_{i} \bar{D}_{i}\right) C_{i} \bar{C}_{i}^{S}$ for $i=1,2 \ldots$. (if $r_{t}=0$, this is still true and D_{t} may be chosen to be identity matrix). Therefore $B_{1} \bar{B}_{1}^{S} \bar{D}^{S}=\bar{D}^{S} B_{1} \bar{B}_{1}^{S}$ and $U B^{S} U^{S} \bar{U} \bar{B} \bar{U}^{S} U \bar{A}^{s} \bar{U}^{S}=U \bar{A}^{s} \bar{U}^{S} U B^{S} U^{S} \bar{U} \bar{B}_{1} \bar{U}^{s}$ so $B^{s} \bar{B}_{A}{ }^{S}=\bar{A}^{s} B^{S} \bar{B}$ or $A B^{s} \bar{B}=B^{s} \bar{B} A$.

Corollary 1

Let A be s-normal, B con-s-normal; if $A B$ is con-s-normal, then $B \bar{A}$ is con-s-normal, and conversely.

Proof

From the above, $U A \bar{U}^{S} U B U^{S}=D B_{1}^{S}$ is con-s-normal, and if $D=D_{r} D_{u}, D_{r}$ real and D_{u} s-unitary, then since $\overline{D_{u}}=\overline{D_{u}} s, \overline{D_{u}}\left(D B_{1}^{S}\right) \overline{D_{u}}=D_{r} B_{1}^{S} \overline{D_{u}}=B_{1}^{S} D_{r} \overline{D_{u}}=B_{1}^{S} \bar{D}$ is con-s-normal, as are $U B U^{S} \bar{U} \bar{A} U^{S}$ and $B \bar{A}$.
Reversing the steps proves the converse.
If A is s-normal and B is con-s-normal, $B \bar{A}$ is con-s-normal iff $A B$ is con-s-normal, iff $\left(B^{S} \bar{B}\right) A=A\left(B \bar{B}^{S}\right)$ and $\left(A^{S} \bar{A}\right) \bar{B}=\bar{B}\left(A \bar{A}^{S}\right)$. Therefore if A is s-normal B is
con-s-normal $B A$ is con-s-normal iff $\left(B^{S} \bar{B}\right) \bar{A}=\bar{A}\left(B \bar{B}^{S}\right)$ and $\left(\bar{A}^{S} A\right) \bar{B}=\bar{B}\left(\bar{A} A^{S}\right)$ that is replace A by \bar{A} in the proceeding or $\left(\bar{B}^{S} B\right) A=A\left(\bar{B} B^{S}\right)=A\left(\bar{B}^{S} B\right)$ and $\left(\bar{A}^{S} A\right) \bar{B}=\bar{B}\left(\bar{A} A^{S}\right)$, thus exhibiting the fact that when $A B$ is con-snormal, $B A$ is not necessarily so.

Theorem 8

If $A=L W=W L$ is s-normal and $B=K V=V K^{S}$ is con-s-normal (where L and K are s-hermitian and W and V are sunitary) then $A B$ is con-s-normal iff $L K=K L, L V=V L^{S}$ and $W K=K W$.

Proof

If the three relations in the theorem hold, then $A B=L W K V=L K W V$, and $A B=W L K V=W K L V=W K V L^{S}=W V K^{S} L^{S}=W V(L K)^{S}$ is con-s-normal since $L K$ is \quad s-hermitian and $W V$ is sunitary.

Conversely, Let $A=\bar{U}^{S} D U=\left(\bar{U}^{S} D_{r} U\right)\left(\bar{U}^{S} D_{u} U\right)=L W$ and

$$
B=\left(\bar{U}^{S} B_{1}^{S} \bar{U}\right)=\left(\bar{U}^{S} K_{1} U\right)\left(\bar{U}^{S} V_{1} \bar{U}\right)=K V=V K^{S}
$$

where K_{1} and V_{1} are s-hermitian and s-unitary and direct sums conformable to B_{1}^{S} and D. A direct check shows that $L K=K L \quad$ and $\quad L V=V L^{S}$, also $\quad W K=\bar{U}^{S} D_{u} K_{1} U=\bar{U}^{S} K_{1} D_{u} U=K W \quad$ since $\quad D_{u} B_{1} \bar{B}_{1}^{S}=B_{1} \bar{B}_{1}^{S} D_{u} \quad$ implies $D_{u} K_{1}=K_{1} D_{u}$. A sufficient condition for the simultaneous reduction of A and B is given by the following:

Theorem 9

If A is s-normal, B is con-s-normal and $A B=B A^{S}$, then $W A \bar{W}^{S}=D$ and $W B^{S} W=F$, the s-normal form of Theorem 1, where W is an s-unitary matrix; also $A B$ is con-s-normal.

Proof

Let $U A \bar{U}^{S}=D \quad$ secondary diagonal and $U B U^{S}=B_{2}$ which is con-s-normal. Then $A B=B A^{S}$ implies $D B_{2}=U A \bar{U}^{S} U B U^{S}=U B U^{S} \bar{U} A^{S} U^{S}=B_{2} D^{S}=B_{2} D$.
Let $D=C_{1} I_{1} \oplus C_{2} I_{2} \oplus \ldots \oplus C_{K} I_{K}$. Where the C_{i} are complex and $C_{i} \neq C_{j}$ for $i \neq j$ and $B_{2}=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{K}$ let V_{i} be s-unitary such that $V_{i} C_{i} V_{i}^{S}=F_{i}$ the real s-normal form of Theorem $\mathbf{1}$, and let $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$. Then $V U A \bar{U}^{S} \bar{V}^{S}=D, V U B U^{S} V^{S}=F=a$ direct sum of the F_{i}.

Also, $\quad A B=B A^{S} \quad$ implies $\quad B^{S} A^{S}=A B^{S} \quad$ and so
$A B \bar{B}^{S} \bar{A}^{S}=A B^{S} \bar{B} \bar{A}^{S}=B^{S} A^{S} \bar{A} \bar{B}=(A B)^{S}(\overline{A B})$.

It is also possible for the product of two s-normal matrices A and B to be con-s-normal if $Q=H U=U H^{S}$ is con-s-normal and if $A=U$ and $B=H$ this is so or if $K V=V K^{S}$ is con-s-normal and if $A=U K=K U$ is s-normal with K s-hermitian and V and U s-unitary, for $B=V, A B=(U K) V=K(U V)=(U V) K^{S}$ con-s-normal. But if in the first example, $U^{2} H$ is not snormal then $H U$ is not con-s-normal so that $B A$ is not necessarily con-s-normal though $A B$ is. When A alone is s-normal an analog of Theorem 2 can be obtained which states the following: if A is s-normal, then $A B$ and $A B^{S}$ are con-s-normal iff $A B \bar{B}^{S}=B^{S} \bar{B} A, B \bar{B}^{S} A=A B^{S} \bar{B}$ and $\bar{B} A \bar{A}^{S}=A^{S} \bar{A} \bar{B}$. (The proof is not included here because of its similarity to that above) when B is con-s-normal, two of these conditions merge into one in Theorem 7. It is possible for the product of two con-snormal matrices to be con-s-normal but no such simple analogous necessary and sufficient conditions as exhibited above are available. This may be seen as follows two non-real complex commutative matrices $P=P^{S}$ and $Q=Q^{S}$ can form a con-snormal (and non-real s-symmetric) matrix $P Q$ which need not be
s-normal. Then two s-symmetric matrices $X=\left[\begin{array}{cc}-i & -i \\ i & -i\end{array}\right] \quad Y=\left[\begin{array}{cc}2 i & 0 \\ 0 & 2 i\end{array}\right]$ are such that $X Y=Z$ is real, s-normal and con-s-normal (s-symmetric). Finally if U and V are two complex s-unitary matrices of the same order, they can be chosen so $U V$ is non-real that is complex, s-normal and con-s-normal. If $A=P \oplus X \oplus U$ and $B=Q \oplus Y \oplus V A B=P Q \oplus X Y \oplus U V$ where A and B are con-s-normal as in $A B$.
(s-symmetric). A simple inspection of these matrices shows that relations on the order of $\left(B^{S} \bar{B}\right) A=A\left(B \bar{B}^{S}\right)=\left(B \bar{B}^{S}\right) A$ and $\left(A^{S} \bar{A}\right) \bar{B}=\left(A \bar{A}^{S}\right) \bar{B}=\bar{B}\left(A \bar{A}^{S}\right)$ do not necessarily hold; these are sufficient, however, to guarantee that $A B$ is con-snormal (as direct verification from the definition).

REFERENCES

Bellman, R. 1960. "Introduction to Matrix Analysis." McGraw-Hill, New York
Krishnamoorthy, S. and Raja, R. 2011. "On Con-s-normal matrices." International J. of Math. Sci. and Engg. Appls., Vol. 5 (II), 131-139.

Stander, J. and Wiegmann, N. 1960. "Canonical Forms for Certain Matrices under Unitary Congruence." Can. J. Math., 12 427445.

Wiegmann, N. 1948. "Normal Products of Matrices." Duke Math. Journal, 15
633-638.

[^0]: *Corresponding author: Dr. Muthugobal, B.K.N.,
 Guest Lecturer in Mathematics, Bharathidasan University Constituent College, Nannilam, India.

