ISSN: 0976-3376

RESEARCH ARTICLE

ON THE 4-CLIFFORD ALGEBRA IN ABSTRACT DIFFERENTIAL GEOMETRY
 ${ }^{1}$ Philippe Kabwita Muyumba, ${ }^{2}$ Benoit Kashal Chiteng, ${ }^{3}$ Jack George Jumbe, ${ }^{4}$ Findje Elago, ${ }^{5}$ Katuta Bwaya, ${ }^{6}$ Kimenyembo Kasongo. M.F

1,3,4Copperbelt University, School of Mathematics and Natural Sciences, Department of Physics, Kitwe, Zambia
2,5,6 Institut Superieur Pedagogique de Lubumbashi, Department of Mathematics and Info, Lubumbashi DRC

ARTICLE INFO

Article History:

Received $17^{\text {th }}$ February, 2018
Received in revised form $20^{\text {th }}$ March, 2018
Accepted $06^{\text {th }}$ April, 2018
Published online $30^{\text {th }}$ May, 2018

Key words:

Differential, triads, Quadratic differential triads,
Clifford differential triad.

Abstract

In this research paper, differential triads over a topological space X are defined as objects of the Cartesian product category $\operatorname{Alg} \times_{X} F^{d} \times_{X} D \operatorname{Mod}$ over the same fixed topological space X. From differential triads sheaves $\left(\mathcal{A}_{i X}, \partial_{i X}, \Omega_{i X}\right)$ and $\left(\mathcal{A}_{j X}, \partial_{j X}, \Omega_{j X}\right)$ we defined morphisms of differential triads using a differential morphism $\partial^{i j}: H_{\mathcal{A}}^{i j} \rightarrow H_{\Omega}^{i j}$, where $H_{\mathcal{A}}^{i j}=\operatorname{Hom}_{\operatorname{Alg}_{X}}\left(\mathcal{A}_{i X}, \mathcal{A}_{j X}\right)$ and $H_{\Omega}^{i j}=\operatorname{Hom}_{D M o d_{X}}\left(\Omega_{i}, \Omega_{j}\right)$. From the quadratic forms, we determined quadratic differential triads and Clifford differential triads.

Copyright®2017, Philippe Kabwita Muyumba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

We consider X as a topological space (see[4] $\&[5]), \Omega_{X}$ as a sheaf of (differential) \mathcal{A}_{X}-modules over X, ∂_{X} as a derivative map like the \mathbb{K}_{X}-sheaf morphism which is also \mathbb{K}_{X}-linear, where $\mathbb{K}=(\mathbb{R} \equiv(\mathbb{R}, r, X)$ and $\mathbb{C} \equiv(\mathbb{C}, c, X))$ is respectively the sheaf of real numbers and the sheaf of complex numbers and \mathcal{A}_{X} the sheaf of unital \mathbb{K}-algebras over X (see[10], [11], [12] \& [13]).
The triplet

$$
\begin{equation*}
\left(\mathcal{A}_{X}, \partial_{X}, \Omega_{X}\right) \tag{1.1}
\end{equation*}
$$

which satisfies, for any open U in X, the Leibniz (product) rule [6]

$$
\begin{equation*}
\partial_{U}(a . w)=a \cdot \partial_{U}(w)+w \cdot \partial_{U}(a) \tag{1.2}
\end{equation*}
$$

with $a, w \in \mathcal{A}_{U}$, and $d_{U}: \mathcal{A}_{U} \rightarrow \Omega_{U}$ is continuous. We set

$$
\begin{equation*}
d T_{X}=\left(\mathcal{A}_{X}, \partial_{X}, \Omega_{X}\right) \tag{1.3}
\end{equation*}
$$

and say that $d T_{X}$ is a differential triad relative to $\left(X, \mathcal{A}_{X}\right)$. If $d T_{i X}=\left(\mathcal{A}_{i X}, \partial_{i X}, \Omega_{i X}\right)$ and $d T_{j X}=\left(\mathcal{A}_{j X}, \partial_{j X}, \Omega_{j X}\right)$ are two differential triads respectively, relative to $\left(X, \mathcal{A}_{i X}\right)$ and $\left(X, \mathcal{A}_{j X}\right)$, then a morphism of differential triads between $d T_{i X}$ and $d T_{j X}$ (or simply from $d T_{i X}$ to $d T_{j X}$) is the following triplet

$$
\begin{equation*}
\left(h_{\mathcal{A}_{X^{\prime}}}^{i j} \partial_{X}^{i j}, h_{\Omega_{X}}^{i j}\right) \tag{1.4}
\end{equation*}
$$

where $h_{\mathcal{A}_{X}}^{i j} \in \operatorname{Hom}_{A l g_{X}}\left(\mathcal{A}_{i X}, \mathcal{A}_{j X}\right)$ and $h_{\Omega_{X}}^{i j} \in \operatorname{Hom}_{D M o d_{X}}\left(\Omega_{i X}, \Omega_{j X}\right)$ are continuous maps and $\partial_{X}^{i j}$ is such that for any open U in X we have

$$
\begin{equation*}
\partial_{U}^{i j}\left(h_{\mathcal{A}_{U}}^{i j}\right)=h_{\Omega_{U}}^{i j} \tag{1.5}
\end{equation*}
$$

We design by $\mathcal{A l g}_{X}$ the category of sheaves of unital \mathbb{K}_{X}-algebras over X and DMod_{X} the category of sheaves of (differential) modules over X, where $\mathbb{K}_{X}=\left(\mathbb{R}_{X}\right.$ or $\left.\mathbb{C}_{X}\right)$, with $\mathbb{R}_{X}=(\mathbb{R}, r, X)$ the sheaf of real numbers and $\mathbb{C}_{X}=(\mathbb{C}, c, X)$ the sheaf of complex numbers over X (see[8]\&[9]).

The set of differentials over $X \in T O P$ is represented by $\operatorname{Diff} f_{X}$, it is also considered as a category of differential morphisms. Let us consider the triplet (see[25])

$$
\begin{equation*}
\left(\operatorname{Alg}_{X}, \text { Diff }_{X}, \text { DMod }_{X}\right) \tag{1.6}
\end{equation*}
$$

such that, for any $\mathcal{A}_{i X} \in O b\left(A l g_{X}\right)$, there exist $\partial_{i X} \in \operatorname{Diff} f_{X}$ and $\Omega_{i X} \in O b\left(D M o d_{X}\right)$ satisfying the Leibniz (product) rule

$$
\begin{equation*}
\partial_{i U}\left(a_{i} \cdot a_{i}^{\prime}\right)=a_{i} \cdot \partial_{i U}\left(a_{i}^{\prime}\right)+a_{i}^{\prime} \cdot \partial_{i U}\left(a_{i}\right) \tag{1.7}
\end{equation*}
$$

with $a_{i}, a_{i}^{\prime} \in \mathcal{A}_{i U} \equiv \mathcal{A}_{i}(U)$, where $\partial_{i U}: \mathcal{A}_{i U} \rightarrow \Omega_{i U} \equiv \Omega_{i}(U)$ is continuous and \mathbb{K}_{U}-linear. The differential triad $d T_{X}$ over (X, \mathcal{A}_{X}) is given by

$$
\begin{equation*}
d T_{X}=\left(\mathcal{A}_{X}, \partial_{X}, \Omega_{X}\right) \tag{1.8}
\end{equation*}
$$

The application $F_{X}^{d}: A l g_{X} \rightarrow \operatorname{DMod}_{X}$ is a functor defined, for any $\mathcal{A}_{i X}, \mathcal{A}_{j X} \in O b\left(A l g_{X}\right)$ and $h_{\mathcal{A}_{X}}^{i j} \in H_{\mathcal{A}_{X}}^{i j}$ as follows

$$
\begin{equation*}
\left.F_{x}^{d}\right|_{\mathcal{A}_{i X}}=\partial_{i X} \text { and }\left.F_{x}^{d}\right|_{H_{\mathcal{A}_{X}}^{i j}}=\partial_{X}^{i j} \tag{1.9}
\end{equation*}
$$

where $H_{\mathcal{A}_{X}}^{i j}=\operatorname{Hom}_{\operatorname{Alg}_{X}}\left(\mathcal{A}_{i X}, \mathcal{A}_{j X}\right)$ and $\partial_{X}^{i j}: H_{\mathcal{A}_{X}}^{i j} \rightarrow H_{\Omega_{X}}^{i j}$ is a continuous map, with $H_{\Omega_{X}}^{i j}=\operatorname{Hom}_{D M o d_{X}}\left(\Omega_{i X}, \Omega_{j X}\right)$. The symbol " \mid " designs the restriction, and we say in this case that the triplets

$$
\begin{equation*}
\left(\mathcal{A}_{i X}, \partial_{i X}, \Omega_{i X}\right) \text { and } \quad\left(H_{\mathcal{A}_{X}}^{i j}, \partial_{X}^{i j}, H_{\Omega_{X}}^{i j}\right) \tag{1.10}
\end{equation*}
$$

are respectively differential triads in $\operatorname{Ob}\left(\operatorname{Alg} \times_{X} F^{d} \times_{X} D \operatorname{Mod}\right)$ and $\operatorname{Mor}\left(\operatorname{Alg} \times_{X} F^{d} \times_{X} D M o d\right)$. The functor given by $F_{X}^{d}: \operatorname{Alg}_{X} \rightarrow \operatorname{DMod}_{X}$ is a differential triad functor over X. We have the following commutative diagram:

$$
\begin{array}{rll}
\mathcal{A}_{i U} & \xrightarrow{\partial_{i U}} & \Omega_{i U} \\
\underline{\lim }_{\bar{x} \in U} \downarrow & & \downarrow \frac{\lim _{x \in U}}{} \\
\mathcal{A}_{i x} & \overrightarrow{\partial_{i x}} & \Omega_{i X}
\end{array}
$$

For this regard, we have the following inductive limit

$$
\begin{equation*}
\frac{\lim _{x \in U}}{} \text { o } \partial_{i U}=\frac{\lim _{x \in U}}{} \text { o } \partial_{i x} \tag{1.11}
\end{equation*}
$$

The differential triads $d T_{i X}$ and their morphisms $m d T_{X}^{i j}$ with $i, j=1,2,3, \ldots$ represent the category which is denoted by $\operatorname{Diff}^{\prime}$ and called the category of differential triads over X (see[14]).

The same notions can be generalized over categories $O p e n_{X}$ and TOP and we attend to construct the category of differential triads over $O p e n_{X}$ and TOP, respectively denoted, by

$$
\operatorname{Diff}_{\text {Open }_{X}} \text { and } \text { Diff }_{T O P}=\text { DiffT }
$$

with

$$
\operatorname{Diff~}_{X} \subseteq \text { Diff }_{\text {open }_{X}} \subseteq \text { DiffT }
$$

A complex of free left (resp. right) \mathcal{A}-modules is a sequence of left (resp. right) the following \mathcal{A}-homomorphisms (see[6])

$$
\begin{equation*}
\Omega^{*} \equiv \cdots \quad \xrightarrow{d^{i-1}} \Omega^{i} \xrightarrow{d^{i}} \Omega^{i+1} \xrightarrow{d^{i+1}} \ldots \tag{1.12}
\end{equation*}
$$

between left (resp. right) \mathcal{A}-modules Ω^{i} and Ω^{i+1} which satisfy, for any open U in X,

$$
\begin{align*}
& \operatorname{Im} d^{i-1}(U) \subseteq \operatorname{Ker} d^{i}(U), \text { i.e. }, d_{U}^{i} o d_{U}^{i-1}=0_{U} \tag{1.13}\\
& \forall i \in \mathbb{Z}
\end{align*}
$$

Regarding the above composition (1.13), where by definition

$$
\begin{equation*}
d^{0}=\partial, d^{i}=d \tag{1.14}
\end{equation*}
$$

$$
\text { for any } i \geq 1
$$

where the symbol d designs the differential \mathcal{A}-homomorphism.
If we specify the order of the set Ω of differential forms (sheaf of differential \mathcal{A}-modules) by setting

$$
\begin{equation*}
\Omega^{0}=\mathcal{A} \text { and } \Omega^{i} \equiv\left(\Omega^{1}\right)^{i}=\Lambda^{i} \Omega^{1} \tag{1.15}
\end{equation*}
$$

where $\Lambda \equiv \Lambda_{\mathcal{A}}$ is the exterior (the skew symmetric homological tensor) product, for any $i \geq 1$. We have, more explicitly

$$
\left\{\begin{array}{c}
\Omega^{1}=\mathcal{A} \wedge \Omega \tag{1.16}\\
\Omega^{2}=\mathcal{A} \wedge \Omega^{1} \wedge \Omega^{1}
\end{array}\right.
$$

2. The quadratic differential triads

Let $d T_{X}$ be a differential triad. If $\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right)$ and $\left(\Omega_{X} q_{\Omega_{X}}\right)$ are two \mathcal{A}_{X}-quadratic spaces, with $q_{\mathcal{A}_{X}}: \mathcal{A}_{X} \rightarrow \mathcal{A}_{X}$ and $q_{\Omega_{X}}: \Omega_{X} \rightarrow$ Ω_{X} two quadratic forms, then the triplet $\left(\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X},\left(\Omega_{X} q_{\Omega_{X}}\right)\right)$ is an \mathcal{A}_{X}-quadratic differential triad iff the following relation is verified

$$
\begin{equation*}
q_{\Omega_{U}} o \partial_{U}=q_{\mathcal{A}_{U}} \tag{2.1}
\end{equation*}
$$

According to the above expression, it follows that $q_{\mathcal{A}_{X}}$ represents a differential quadratic form. The quadratic differential triad relative to $\left(X, \mathcal{A}_{\mathrm{X}}\right)$ is determined as

$$
\begin{equation*}
q d T_{X} \equiv\left(\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X},\left(\Omega_{X}, q_{\Omega_{X}}\right)\right) \tag{2.2}
\end{equation*}
$$

Here $q d T_{i X}$ and $q d T_{j X}$ are two quadratic differential triads relative to $\left(X, \mathcal{A}_{i X}\right)$ and $\left(X, \mathcal{A}_{j X}\right)$, respectively , with $i, j=1,2, \ldots$ A morphism of quadratic differential triads from $q d T_{i X}$ into $q d T_{j X}$ is the triplet

$$
\begin{equation*}
\left(h_{\mathcal{A}_{X}}^{i j}, \partial_{X}^{i j}, h_{\Omega_{X}}^{i j}\right) \tag{2.3}
\end{equation*}
$$

where $h_{\mathcal{A}_{X}}^{i j} \in H_{\mathcal{A}_{X}}^{i j}=\operatorname{Hom}_{\mathbb{K}_{X}}\left(\mathcal{A}_{i X}, \mathcal{A}_{j X}\right)$ and $h_{\Omega_{X}}^{i j} \in H_{\Omega_{X}}^{i j}=\operatorname{Hom}_{\mathcal{A}_{X}}\left(\Omega_{i X}, \Omega_{j X}\right)$ and moreover the following relation

$$
\begin{equation*}
\partial_{X}^{i j}\left(h_{\mathcal{A}_{X}}^{i j}\right)=h_{\Omega_{X}}^{i j} \tag{2.4}
\end{equation*}
$$

satisfies the Leibniz (product) rule, as given in (1.7). We observe that the triplet $\left(H_{\mathcal{A}_{X}}^{i j}, \partial_{X}^{i j}, H_{\Omega_{X}}^{i j}\right)$ represents the differential triad. The categories of differential triads and quadratic differential triads over X are denoted respectively by

$$
\begin{equation*}
\text { Diff }_{X}, Q D i f f T_{X} \tag{2.5}
\end{equation*}
$$

$\left(D_{1}\right)$ In the context of sheaves over categories, we intend to replace the topological space X, respectively, by the categories $O p e n_{X}$ and $T O P$ so that we determine, respectively, the categories of quadratic differential triads over $O p e n_{X}$ and $T O P$, denoted by

$$
\begin{equation*}
\text { QDiffT }_{\text {Open }_{X}}, \quad \text { QDiff }_{T O P} \equiv \text { QDiffT } \tag{2.6}
\end{equation*}
$$

$\left(D_{2}\right)$ Is it possible to express a functor $Q:$ Diff $T \rightarrow$ DiffT as follows

$$
\begin{equation*}
Q(\mathcal{A}, \partial, \Omega)=\left(\left(\mathcal{A}, q_{\mathcal{A}}\right), \partial,\left(\Omega, q_{\Omega}\right)\right) \text { and } Q\left(h_{\mathcal{A}}^{i j}, \partial^{i j}, h_{\Omega}^{i j}\right)=\left(h_{\mathcal{A}}^{i j}, \partial^{i j}, h_{\Omega}^{i j}\right) \tag{2.7}
\end{equation*}
$$

where $q_{\mathcal{A}}$ and q_{Ω} satisfy the composition condition

$$
q_{\Omega} \text { o } \partial=q_{\mathcal{A}}
$$

$\left(D_{3}\right)$ Our main concern is to find out what kind of pairs $\left(q_{\mathcal{A}}, q_{\Omega}\right)$ that can satisfy the above expression $q_{\Omega} o \partial=q_{\mathcal{A}}$?
Knowing that from a given pair (\mathcal{A}, Ω), we can define several pairs of quadratic spaces, i.e., $\left(\mathcal{A}, q_{\mathcal{A}}^{i}\right),\left(\Omega, q_{\Omega}^{i}\right)$, where $i=$ $1,2,3, \ldots$

To answer the above concern, we need to fix a (differential) \mathcal{A}-quadratic form $\dot{q}_{\Omega}: \Omega \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\int \dot{q}_{\Omega}=\hat{q}_{A} \tag{2.8}
\end{equation*}
$$

where the symbol $\int \dot{q}_{\Omega}$ designs the "integral" of the differential form \dot{q}_{Ω}, with $\hat{q}_{\mathcal{A}}$ the primitive function of \dot{q}_{Ω}. In other terms, the primitive function is

$$
\begin{equation*}
\hat{q}_{\mathcal{A}}=q_{\mathcal{A}}+k \quad, \quad k \in \mathcal{A}_{\mathbb{R}} \tag{2.9}
\end{equation*}
$$

$\left(D_{4}\right)$ Designing by $\mathcal{A}_{\mathbb{K}}$ the underlying of \mathbb{K} in \mathcal{A} and then obtain an equivalence relation, \sim, defined in $E n d_{\mathbb{K}}(\mathcal{A}) \equiv$ $\operatorname{Hom}_{\mathbb{K}}(\mathcal{A}, \mathcal{A})$ as follows

$$
\begin{equation*}
q_{\mathcal{A}}^{i} \sim q_{\mathcal{A}}^{j} \quad \Leftrightarrow \quad q_{\mathcal{A}}^{i}-q_{\mathcal{A}}^{j}=k \quad \text { with } \quad k \in \mathcal{A}_{\mathbb{K}} \tag{2.10}
\end{equation*}
$$

$\left(D_{5}\right)$ Referring to $\left(D_{3}\right)$, from (differential) \mathcal{A}-quadratic form $\dot{q}_{\Omega}: \Omega \rightarrow \mathcal{A}$, we determine a subcategory $\dot{Q} D i f f T$ of QDiffT whose objects $\left(\left(\mathcal{A}, \hat{q}_{\mathcal{A}}\right), d,\left(\Omega, \dot{q}_{\Omega}\right)\right)$ verify at the same time, expressions (2.8), (2.9) and the following expression

$$
\begin{equation*}
\dot{q}_{\Omega} \text { o } \partial=\hat{q}_{\mathcal{A}} \tag{2.11}
\end{equation*}
$$

Let us design by $\hat{Q}_{\mathcal{A}}$ and \dot{Q}_{Ω} the set of differential quadratic forms $\dot{q}_{\Omega}: \Omega \rightarrow \mathcal{A}, \ldots$ and the set of quadratic forms $\hat{q}_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{A}$, \ldots... respectively. By setting

$$
\begin{equation*}
\int: \dot{Q}_{\Omega} \rightarrow \dot{Q}_{\mathcal{A}}, \quad \dot{q}_{\Omega} \rightarrow \int \dot{q}_{\Omega}=\hat{q}_{\mathcal{A}} \tag{2.12}
\end{equation*}
$$

Then the triplet

$$
\begin{equation*}
\operatorname{qin} T=\left(\dot{Q}_{\Omega}, \int, \hat{Q}_{\mathcal{A}}\right) \tag{2.13}
\end{equation*}
$$

represents the quadratic integral triad over \mathcal{A} if and only if the following inductive limit is verified

$$
\begin{equation*}
\int_{x}=\lim _{x \in U} \int_{U}=\lim _{x \in U}\left(\partial_{U}\right)^{-1}=\left(\partial_{x}\right)^{-1} \tag{2.14}
\end{equation*}
$$

where ∂ satisfies the Leibniz product rule. According to the terminology of (1.6), we can write expression (2.13) as

$$
\begin{equation*}
\text { QINT }_{X}=\left(Q D \operatorname{Mod}_{X}, I N T_{X}, Q A l g_{X}\right) \tag{2.15}
\end{equation*}
$$

where $I N T_{X}$ represents the set (or the category) of integral triads, $Q I N T_{X}$ is the category of quadratic differential modules and $Q A l g_{X}$ is the category of algebras, all over X.

Considering the linear mapping $\dot{Q}: D i f f T \rightarrow \dot{Q} D i f f T \subseteq Q D i f f T$ which clearly defines an operator satisfying the expressions (2.8), (2.9) and (2.12), we observe that \dot{Q} is a quadratic functorial operator.

Theorem 2.1 The quadratic functorial operator \dot{Q} is a covariant functor.
Proof. Let $d T_{i}, d T_{j}, d T_{k} \in O b(D i f f T)$ and $m d T_{i j} \in \operatorname{Hom}\left(d T_{i}, d T_{j}\right), m d T_{i k} \in \operatorname{Hom}\left(d T_{i}, d T_{k}\right)$ and $m d T_{j k} \in \operatorname{Hom}\left(d T_{j}, d T_{k}\right)$. Let us apply the operator \dot{Q} on Difft, so that
(1) $\dot{Q}\left(m d T_{j k}{ }^{\circ} m d T_{i j}\right)=m \dot{Q} d T_{j k}{ }^{\circ} m \dot{Q} d T_{i j}=\dot{Q}\left(m d T_{j k}\right) \circ \dot{Q}\left(m d T_{i j}\right)$
(2) $\dot{Q}\left(i d_{d T_{i}}\right)=i d_{\dot{Q} d T_{i}}=i d_{\dot{Q}\left(d T_{i}\right)}$

By convenience, we set the quadratic functorial operator as

$$
\begin{equation*}
\dot{Q} D i f f T=<\left(\text { DiffT }, \dot{q}=\left\{\hat{q}_{\mathcal{A}}, \dot{q}_{\Omega}\right\}\right)> \tag{2.16}
\end{equation*}
$$

where $\left\{\dot{q}_{\mathcal{A}}, \dot{q}_{\Omega}\right\}$ satidfies (2.1).
Analogously, we can construct the quadratic functor operators as

$$
\begin{equation*}
\dot{Q}_{\text {open }_{X}}: \text { DiffT }_{\text {open }_{X}} \rightarrow \dot{Q} \text { Diff }_{\text {open }_{X}} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{Q}_{T O P}: \text { Diff }_{T O P} \rightarrow \dot{Q} D i f f T_{T O P} \tag{2.18}
\end{equation*}
$$

For $H_{\mathcal{A}}^{i j}=\operatorname{Hom}_{\mathbb{K}}\left(\mathcal{A}_{i}, \mathcal{A}_{j}\right)$ and $H_{\Omega^{1}}^{i j}=\operatorname{Hom}_{\mathcal{A}}\left(\Omega_{i}^{1}, \Omega_{j}^{1}\right)$, the triplet $\left(H_{\mathcal{A}}^{i j}, \partial^{i j}, H_{\Omega}^{i j}\right)$ is a differential triad over X, O open X_{X} or $T O P$ then consequently the quadratic functorial operator \dot{Q} acts on $\left(H_{\mathcal{A}}^{i j}, d^{i j}, H_{\Omega}^{i j}\right)$ so that the quadratic differential triad becomes

$$
\begin{equation*}
\dot{Q}\left(d T^{i j}\right)=\dot{q} d T^{i j}=\left(\left(H_{\mathcal{A}}^{i j}, \dot{q}_{H_{\mathcal{A}}}\right), \partial^{i j},\left(H_{\Omega^{1}}^{i j} \dot{q}_{H_{\Omega^{1}}^{i j}}\right)\right) \tag{2.19}
\end{equation*}
$$

3. The main result

Our purpose now is to study the methods under which we associate the quadratic differential triad over $\left(X,\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right)\right)$ denoted by $q d T_{X}=\left(\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X},\left(\Omega_{X}, q_{\Omega_{X}}\right)\right)$ to a Clifford differential triad over $\left(X,\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right)\right)$ denoted by $C d T_{X}=\left(C\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X}^{C}, C\left(\Omega_{X}, q_{\Omega_{X}}\right)\right)$. Designing the categories of Clifford differential triads over X, O Oen X_{X} and TOP by CDiff $_{X}$, CDiffT $_{\text {Open }_{X}}$, and CDiffT $T_{\text {TOP }}$ and letting $\left(E_{X}, q_{E_{X}}\right)$ be a quadratic space, the Clifford algebra of $\left(E_{X}, q_{E_{X}}\right)$ or simply, of E, is as a pair (C_{X}, c_{X}) formed by an \mathcal{A}_{X}-algebra C_{X} and an \mathcal{A}-linear map $c_{X}: E_{X} \rightarrow C_{X}$ such that, for any open $U \subseteq X$, we have (see[1], [2],[3] \&[7])

$$
\begin{equation*}
c_{U}(s)^{2}=q_{E_{U}}(s) \cdot 1_{C_{U}} \tag{3.1}
\end{equation*}
$$

where $s \in E_{U} \equiv E(U)$ and $1_{C_{U}}$ designs the unity in $C_{U} \equiv C(U)$. Also, for any \mathcal{A}_{X}-algebra F_{X} and all \mathcal{A}_{X}-linear map $f_{X}: E_{X} \rightarrow F_{X}$ such that, for any open $U \subseteq X$, we have

$$
\begin{equation*}
f_{U}(s)^{2}=q_{E_{U}}(s) \cdot 1_{F_{U}} \tag{3.2}
\end{equation*}
$$

where $s \in E_{U}$, there exists a unique morphism $\sigma_{X}: C_{X} \rightarrow F_{X}$ of \mathcal{A}_{X}-algebras verifying $\sigma_{U} o c_{U}=f_{U}$. The Clifford \mathcal{A}_{X}-algebra $\left(\mathrm{C}_{X}, c_{X}\right)$ is denoted by

$$
\begin{equation*}
C_{X} \equiv C_{X}\left(E_{X}, q_{E_{X}}\right) \equiv\left(C_{X}\left(E_{X}, q_{E_{X}}\right), c_{X}\right) \tag{3.3}
\end{equation*}
$$

Analogously, we construct Clifford \mathcal{A}_{X}-algebra through another approach, designing by $I\left(q_{E_{X}}\right)$ the \mathcal{A}_{X}-ideal of the tensor $\mathcal{A}_{\mathrm{X}^{-}}$ algebra $T\left(E_{X}\right)$ generated, for any open $U \subseteq X$, by the elements of the form

$$
\begin{equation*}
(s \otimes s) \cdot q_{E_{U}}(s) \cdot 1_{T\left(E_{U}\right)}, s \in E_{U} \tag{3.4}
\end{equation*}
$$

We restrict the graduation of $T\left(E_{X}\right)$ on $\mathrm{Z} /(2)$, the \mathcal{A}_{X}-ideal $I\left(q_{E_{X}}\right)$ is homogeneous and the quotient

$$
\begin{equation*}
T\left(E_{X}\right) / I\left(q_{E_{X}}\right) \tag{3.5}
\end{equation*}
$$

is a graded \mathcal{A}_{X}-algebra on $\mathrm{Z} /(2)$, such that the homogeneous elements of degrees o and 1 are easy to describe.
We design by

$$
\begin{equation*}
T_{0}\left(E_{X}\right) \equiv T_{0}\left(E_{0_{X}}\right) \text { and } T_{1}\left(E_{X}\right) \equiv T_{1}\left(E_{1_{X}}\right) \tag{3.6}
\end{equation*}
$$

respectively, the sub \mathcal{A}_{X}-algebra of homogeneous elements of degree 0 and the sub \mathcal{A}_{X}-module (or sub-vector sheaf) of homogenous elements of degree 1 . We set

$$
\begin{equation*}
c_{X}\left(E_{X}, q_{E_{X}}\right) T\left(E_{X}\right) / I\left(q_{E_{X}}\right) \tag{3.7}
\end{equation*}
$$

and the canonical projection $\pi_{X}: T\left(E_{X}\right) \rightarrow c_{X}\left(E_{X}, q_{E_{X}}\right)$ is such that, for any open $U \subseteq X$, we have

$$
\begin{equation*}
\left(\pi_{U}(s)\right)^{2}=q_{E_{U}}(s) \cdot 1_{T\left(E_{U}\right)} \tag{3.8}
\end{equation*}
$$

with $s \in E_{U}$. As $T\left(E_{X}\right)=T_{0}\left(E_{X}\right)+T_{1}\left(E_{X}\right)$, we observe that

$$
\begin{equation*}
c_{X}\left(E_{X}, q_{E_{X}}\right)=c_{0 X}\left(E_{0 X}, q_{E_{0 X}}\right)+c_{1 X}\left(E_{1 X}, q_{E_{1 X}}\right) \tag{3.9}
\end{equation*}
$$

where $c_{0 X}\left(E_{0 X}, q_{E_{0 X}}\right)=\pi_{X}\left(T_{0}\left(E_{0 X}\right)\right)$ and $c_{1 X}\left(E_{1 X}, q_{E_{1 X}}\right)=\pi_{X}\left(T_{1}\left(E_{1 X}\right)\right)$. It follows that $c_{X}\left(E_{X}, q_{E_{X}}\right)$ is a $\mathrm{Z} /(2)-$ graded $\mathcal{A}_{\mathrm{X}^{-}}$ algebra.

Theorem 3.1 Let $\delta_{X}: E_{X} \rightarrow D_{X}$ be an \mathcal{A}_{X}-linear map such that, for any open $U \subseteq X$, we have

$$
\begin{equation*}
\left(\delta_{U}(s)\right)^{2}=q_{E_{U}}(s) .1_{C_{U}}, s \in E_{U} \tag{3.10}
\end{equation*}
$$

Then, there exists a unique \mathcal{A}_{X}-algebra morphism $\varphi_{X}: C_{X} \rightarrow D_{X}$ such that

$$
\begin{equation*}
\left(\delta_{U}(s)\right)^{2}=\varphi_{U}\left(\pi_{U}(s)\right) \tag{3.11}
\end{equation*}
$$

Proof. By definition of tensor \mathcal{A}_{X}-algebra, there exists a unique map

$$
\bar{\delta}_{X}: T\left(E_{X}\right) \rightarrow D_{X}
$$

which extends δ_{X}, then , for $s \in E_{U}$, we have (see[23] \& [24])

$$
\begin{aligned}
\bar{\delta}_{U}\left(s \otimes s-q_{E_{U}}(s) \cdot 1_{T\left(E_{U}\right)}\right) & =\bar{\delta}_{U}(s \otimes s)-q_{E_{U}}(s) \cdot 1_{T\left(E_{U}\right)} \\
= & \bar{\delta}_{U}(s) \bar{\delta}_{U}(s)-q_{E_{U}}(s) \cdot 1_{T\left(E_{U}\right)} \\
= & \delta_{U}(s) \delta_{U}(s)-q_{E_{U}}(s) \cdot \varphi_{U}\left(\pi_{U}\left(1_{T\left(E_{U}\right)}\right)\right) \\
= & \left(\delta_{U}(s)\right)^{2}-q_{E_{U}}(s) \cdot 1_{D_{U}}
\end{aligned}
$$

It follows that $\delta_{X}\left(I\left(q_{X}\right)\right)=0$ and $I\left(q_{X}\right) \subset \operatorname{ker}\left(E_{X}\right)$. For these reasons, there exists a unique $\varphi_{X}: C_{X} \rightarrow D_{X}$ such that

$$
\varphi_{U} \circ \pi_{U}=\bar{\delta}_{U} \text { and } \bar{\delta}_{U} \circ t_{U}=\delta_{U}
$$

where $\delta_{U}(s)$ is the contraction of $\bar{\delta}_{U}(s)$, for any $s \in E_{U}$, with $U \subseteq X$ open.
Setting $q_{E_{U}}(s)=\pi_{E_{U}}(s)$, hence, for $r \in \pi_{U}\left(E_{U}\right)$, we get

$$
r^{2}=q_{\pi_{U\left(E_{U}\right)}}(r) \cdot 1_{\tau_{U}}
$$

For a quadratic differential triad $q d T_{X} \equiv\left(\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X},\left(\Omega_{X}, q_{\Omega_{X}}\right)\right.$ over $\left(X, \mathcal{A}_{X}\right)$, the Clifford differential triad relative is represented by the triplet

$$
\begin{equation*}
\left(C\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X}^{c}, C\left(\Omega_{X}, q_{\Omega_{X}}\right)\right) \tag{3.12}
\end{equation*}
$$

such that
(a) $\phi:\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right) \rightarrow \mathcal{A}_{X}$ and $\Psi:\left(\Omega_{X}, q_{\Omega_{X}}\right) \rightarrow \mathcal{A}_{X}$ are linear maps satisfying

$$
\left\{\begin{array}{cl}
\phi(\alpha) \phi(\alpha)=-q_{\mathcal{A}_{U}}(\alpha) .1, & \alpha \in \mathcal{A}_{U} \tag{3.13}\\
\psi(\alpha) \psi(\alpha)=-q_{\Omega_{U}}(s) .1, & s \in \Omega_{U}
\end{array}\right.
$$

(b) Φ and ψ extend uniquely to $\hat{\phi}:\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right) \rightarrow \mathcal{A}_{X}$ and $\hat{\psi}: C\left(\Omega_{X}, q_{\Omega_{X}}\right) \rightarrow \Omega_{X}$

We set

$$
\begin{equation*}
C d T_{X}=\left(C\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X}^{c}, C\left(\Omega_{X}, q_{\Omega_{X}}\right)\right) \tag{3.14}
\end{equation*}
$$

where C designs the functorial morphism which transforms a quadratic differential triad $q d T_{X}$ to a Clifford differential $\operatorname{triad} C d T_{X}$ and d_{X}^{c} satisfies the Leibniz (product) rule as given in (1.7). For convenience, we write

$$
\begin{equation*}
C d T_{X}=\left(C\left(\mathcal{A}_{X}\right), \partial_{X}^{c}, C\left(\Omega_{X}\right)\right) \tag{3.15}
\end{equation*}
$$

By Considering $C T_{i X}=\left(C\left(\mathcal{A}_{i X}\right), \partial_{i X}^{c}, C\left(\Omega_{i X}\right)\right)$ and $C T_{j X}=\left(C\left(\mathcal{A}_{j X}\right), \partial_{j X}^{c}, C\left(\Omega_{j X}\right)\right)$ as two Clifford differential triads, the morphism from $C T_{i X}$ to $C T_{j X}$ is the triplet

$$
\begin{equation*}
\left(C h_{\mathcal{A}_{X}}^{i j}, \partial_{X}^{C i j}, C h_{\Omega_{X}}^{i j}\right) \tag{3.16}
\end{equation*}
$$

where $\operatorname{Ch}_{\mathcal{A}_{X}}^{i j} \in \operatorname{Hom}_{\mathbb{K}_{X}}\left(C\left(\mathcal{A}_{i X}\right), C\left(\mathcal{A}_{j X}\right)\right)$ and $C h_{\Omega_{X}}^{i j} \in \operatorname{Hom}_{\mathbb{K}_{X}}\left(C\left(\Omega_{i X}\right), C\left(\Omega_{j X}\right)\right)$ are assumed to be continuous maps and $\partial_{X}^{c i j}$ satisfies the Leibniz (product) rule which verifies for any open U in X, the relation

$$
\begin{equation*}
\partial_{X}^{c i j}\left(C h_{\mathcal{A}_{X}}^{i j}\right)=C h_{\Omega_{X}}^{i j} \tag{3.17}
\end{equation*}
$$

From the above concepts, it follows that

$$
\begin{equation*}
C h_{\Omega_{X}}^{i j} \circ \partial_{I X}^{c}=\partial_{J X}^{c} \circ C h_{\mathcal{A}_{X}}^{i j} \tag{3.18}
\end{equation*}
$$

so that we write

$$
\begin{equation*}
\left.d_{X}^{i j}\left(C h_{\mathcal{A}_{X}}^{i j}\right)\right|_{\left\{a_{i}\right\}}=\left(C h_{\Omega_{X}}^{i j} \circ \partial_{I X}^{c}\right)\left(a_{i}\right)=\left(\partial_{J X}^{c} \circ C h_{\mathcal{A}_{X}}^{i j}\right)\left(a_{i}\right) \tag{3.19}
\end{equation*}
$$

for any $a_{i} \in C\left(\mathcal{A}_{i X}\right)$. Since the category of Clifford differential triads is denoted by CDiff T, clearly the mapping $F:$ QDiffT \rightarrow CDiffT behaves nicely as a differential triad functor. Consequently, the mapping C:DiffT \rightarrow CDiffT is the Clifford differential triad functor regarding the following composition relation

$$
\begin{equation*}
F o Q=C \tag{3.20}
\end{equation*}
$$

From which one writes

$$
\begin{equation*}
C\left(\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X},\left(\Omega_{X}^{1}, q_{\Omega_{X}^{1}}\right)\right)=\left(C\left(\mathcal{A}_{X}, q_{\mathcal{A}_{X}}\right), \partial_{X}^{c}, C\left(\Omega_{X}^{1}, q_{\Omega_{X}^{1}}\right)\right) \tag{3.21}
\end{equation*}
$$

By fixing a common basis topological space X, then we design the categories of differential triads, quadratic differential triads and Clifford differential triads, respectively, by Diff T_{X}, QDiff $T_{\mathrm{X}}, \mathrm{CDiff}_{X}$. A complex of free left (resp. right) $C(\mathcal{A})$-modules is a sequence of left (resp. right) the following $C(\mathcal{A})$-homomorphisms

$$
\begin{equation*}
C\left(\Omega^{*}\right) \equiv \cdots \quad \xrightarrow{d^{c, i-1}} C\left(\Omega^{i}\right) \xrightarrow{d^{c, i}} C\left(\Omega^{i+1}\right) \xrightarrow{d^{c, i+1}} \ldots \tag{3.22}
\end{equation*}
$$

between left (resp. right) $C(\mathcal{A})$-modules $C\left(\Omega^{i}\right)$ and $C\left(\Omega^{i+1}\right)$ which satisfy, for any open U in X

$$
\begin{align*}
& \operatorname{Im} d^{c, i-1}(U) \subseteq \operatorname{Ker} d^{c, i}(U), \text { i.e., } d_{U}^{c, i} o d_{U}^{c, i-1}=0_{U} \tag{3.23}\\
& \forall i \in \mathbb{Z}
\end{align*}
$$

Regarding the above composition (3.23), where by definition

$$
\begin{equation*}
d^{c, 0}=\partial^{c}, d^{c, i}=d^{c} \tag{3.24}
\end{equation*}
$$

for any $i \geq 1$, where the symbol d designs the differential \mathcal{A}-homomorphism.
If we specify the order of the set Ω of differential forms (sheaf of differential \mathcal{A}-modules) by setting

$$
\begin{equation*}
C\left(\Omega^{0}\right)=C(\mathcal{A}), C\left(\Omega^{i}\right) \equiv C\left(\Omega^{1}\right)^{i}=C\left(\wedge^{i} \Omega^{1}\right) \tag{3.25}
\end{equation*}
$$

where $\wedge \equiv \wedge_{\mathcal{A}}$ be the exterior (the skew symmetric homological tensor) product, for any
$i \geq 1$. We have, more explicitly

$$
\begin{equation*}
C\left(\Omega^{1}\right)=C(\mathcal{A}) \wedge C(\Omega), C\left(\Omega^{2}\right)=C(\mathcal{A}) \wedge C\left(\Omega^{1}\right) \wedge C\left(\Omega^{1}\right) \tag{3.26}
\end{equation*}
$$

A complex of free left (resp. right) $C(\mathcal{A})$-modules denoted by

$$
\begin{equation*}
C\left(\Omega_{*}\right) \equiv \ldots \quad \xrightarrow{\int_{\int_{i+2}}} C\left(\Omega_{i+1}\right) \xrightarrow{\int_{\int_{i+1}}} C\left(\Omega_{i}\right) \xrightarrow{\int_{f_{i}}} \ldots \tag{3.27}
\end{equation*}
$$

is a sequence of left (resp. right) $C(\mathcal{A})$-homomorphisms $\int_{i+1}: C\left(\Omega_{i+1}\right) \rightarrow C\left(\Omega_{i}\right)$ between left (resp. right) $C(\mathcal{A})$-modules which satisfy, for any open U in X

$$
\begin{equation*}
\operatorname{Im} \int_{i+1, U} \subseteq \operatorname{ker} \int_{i, U} \text {, i.e., } \int_{i, U} o \int_{i+1, U}=0_{U} \equiv 0 \tag{3.28}
\end{equation*}
$$

for all $i \in \mathbb{Z}$, where the symbol \int designs the integral $C(\mathcal{A})$-homomorphism. By replacing $C\left(\Omega^{i}\right)$ by $C d T^{i}$ and $C\left(\Omega_{i}\right)$ by $C\left(i n T_{i}\right)$, we obtain , respectively the complexe :

$$
C\left(\mathrm{dT}^{*}\right) \equiv \cdots \quad \xrightarrow{m d T^{c, i-1}} C\left(d T^{i}\right) \xrightarrow{m d T^{c, i}} C\left(d T^{i+1}\right) \xrightarrow{m d T^{c, i+1}} \ldots
$$

And

$$
C\left(i n T_{*}\right) \equiv \ldots \quad \stackrel{m \int i n T_{i}}{\longleftarrow} C\left(i n \int T_{i}\right) \stackrel{m \int i n T_{i+1}}{\leftrightarrows} C\left(i n T_{i+1}\right) \stackrel{m \int i n T_{i+2}}{\leftrightarrows} \ldots
$$

We set $C\left(d T^{i}\right)=C\left(i n \int T_{i}\right)$ within $C(\mathcal{A})$-isomorphism, and $m d T^{c, i}$ and $m \int i n T_{i+1}$ are morphisms, respectively, of Clifford differential triads and of Clifford integral triads, for all $i \in \mathbb{Z}$. In other words, we have (see[15])

$$
\begin{equation*}
m \int i n T_{i+1} o m d T^{c, i}=i d_{C\left(d T^{i}\right)} \tag{3.29}
\end{equation*}
$$

4. Applications

We suggest some physics applications of Clifford differential triads by revisiting special relativity when we take into consideration a natural algebraic concept alternative to the Minkowski space-time. The two algebras considered are
$(A)_{1} \quad \mathcal{A}_{\mathbb{R}}$ is the real underlying of the \mathbb{R}-algebra sheaf \mathcal{A};
$(A)_{2} \quad C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)$ is the $2-$ dimensional Clifford $\mathcal{A}_{\mathbb{R}}$-algebra.
Our approach consists to replace the unit imaginary $i=\sqrt{-1}$ by an element $e_{1} e_{2}$ of $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}(U)\right)$, where $\left(e_{1}, e_{2}\right)$ is an $\mathcal{A}_{\mathbb{R}}(U)$-basis of $\mathcal{A}_{\mathbb{R}}^{2}(U)$. In this case, an $\mathcal{A}_{\mathbb{R}}(U)$-basis of $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}(U)\right)$ is

$$
\begin{equation*}
\left(I, e_{1}, e_{2}, e_{1} e_{2}\right) \equiv\left(I, e_{1}, e_{2}, l\right) \tag{4.1}
\end{equation*}
$$

where $e_{1}^{2}=e_{2}^{2}=I$ and $e_{1} e_{2}=-e_{2} e_{1}$, from which we clearly obtain

$$
\begin{equation*}
l^{2}=\left(e_{1} e_{2}\right)^{2}=e_{1} e_{2} e_{1} e_{2}=-e_{1} e_{1} e_{2} e_{2}=-e_{1}^{2} e_{2}^{2}=-I \tag{4.2}
\end{equation*}
$$

and l is an alternative of $i=\sqrt{-1}$. An element μ in $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)$ is written as follows

$$
\begin{equation*}
\mu=I a+r_{1} e_{1}+r_{2} e_{2}+l b \tag{4.3}
\end{equation*}
$$

where $a \in \mathcal{A}_{\mathbb{R}}, r_{1} e_{2}+r_{2} e_{2} \in \mathcal{A}_{\mathbb{R}}^{2}, b \in \mathcal{A}_{\mathbb{R}}$ and $l b \in \Lambda^{2} \mathcal{A}_{\mathbb{R}}$, i.e., we set

$$
\begin{equation*}
C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)=\mathcal{A}_{\mathbb{R}} \oplus \mathcal{A}_{\mathbb{R}}^{2} \oplus \Lambda^{2} \mathcal{A}_{\mathbb{R}}=\Lambda^{0} \mathcal{A}_{\mathbb{R}} \oplus \Lambda^{1} \mathcal{A}_{\mathbb{R}} \oplus \Lambda^{2} \mathcal{A}_{\mathbb{R}} \tag{4.4}
\end{equation*}
$$

In short, one writes within $\mathcal{A}_{\mathbb{R}}$-isomorphism

$$
\begin{equation*}
C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)=\Lambda \mathcal{A _ { \mathbb { R } }} \tag{4.5}
\end{equation*}
$$

where $\wedge \mathcal{A}_{\mathbb{R}}$ is the exterior $\mathcal{A}_{\mathbb{R}}$-algebra of $\mathcal{A}_{\mathbb{R}}$.
For two vectors given by $\mu=r_{1} e_{1}+r_{2} e_{2}$ and $\mu^{\prime}=r_{1}^{\prime} e_{1}+r_{2}^{\prime} e_{2}$ in $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)$, one can check that their product called the Clifford (or geometric) product, is determined as follows

$$
\begin{equation*}
\mu \mu^{\prime}=\mu \cdot \mu^{\prime}+\mu \wedge \mu^{\prime} \tag{4.6}
\end{equation*}
$$

where $\mu . \mu^{\prime}=\left(r_{1} r_{1}^{\prime}+r_{2} r_{2}^{\prime}\right)$ and $\mu \wedge \mu^{\prime}=\left(r_{1} r_{2}^{\prime}-r_{2} r_{1}^{\prime}\right) l$.
The distance measure or metric over the space $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)$ is $\mu . \mu^{\prime}$. Considering the following map

$$
c_{X}:\left(\mathcal{A}_{\mathbb{R}} \oplus \mathcal{A}_{\mathbb{R}}\right)_{X} \rightarrow C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)_{X}
$$

defined, for any open U in X, by

$$
\begin{equation*}
c_{U}\left(\xi_{\alpha}\right) \equiv c_{U}\left(\xi_{1}, \xi_{2}\right):=\left(\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}\right) \equiv \eta_{i} \tag{4.7}
\end{equation*}
$$

with $i=o, 1,2,3$ such that $\eta_{0}=a, \eta_{1}=r_{1}, \eta_{2}=r_{2}, \eta_{3}=b \in\left(\mathcal{A}_{\mathbb{R}}\right)_{U}$.
We observe that if $\left(e_{1}, e_{2}\right)$ is $\left(\mathcal{A}_{\mathbb{R}}\right)_{U}$-basis of $\left(\mathcal{A}_{\mathbb{R}} \oplus \mathcal{A}_{\mathbb{R}}\right)_{U}$, then $\left(I, e_{1}, e_{2}, e_{1} e_{2}\right)$ is $\left(\mathcal{A}_{\mathbb{R}}\right)_{U}$-basis of $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)_{U}$.
Using differential triad notation, we get

$$
\begin{equation*}
q d T_{X}:=\left(\left(\mathcal{A}_{\mathbb{R}} \oplus \mathcal{A}_{\mathbb{R}}\right)_{X}, \partial_{X}, \Omega^{1}\left(\mathcal{A}_{\mathbb{R}} \oplus \mathcal{A} \mathcal{A}_{\mathbb{R}}\right)_{X}\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
q d T_{X}:=\left(C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)_{X}, \partial_{X}^{C}, \Omega^{1}\left(C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)_{X}\right)\right) \tag{4.9}
\end{equation*}
$$

where ∂_{X}^{C} designs the Clifford differentials.
Considering the 2-real Euclidean differential triad, for any open U in X, we have

$$
\begin{equation*}
d_{U}\left(r_{1}, r_{2}\right)=\left(d_{U} r_{1}, d_{U} r_{2}\right) \equiv\left(d r_{1}, d r_{2}\right)=d_{r_{j}}, j=1,2 \tag{4.10}
\end{equation*}
$$

so that the Pythagorean distance measure (or metric) is written as

$$
\begin{gathered}
d S^{2}=d r_{1}^{2}+d r_{2}^{2} \\
d S^{2}=\left(d r_{1}, d r_{2}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{d r_{1}}{d r_{2}} \\
d S^{2} \equiv \delta_{j k} d r_{j} d r_{k}, \quad j, k=1,2
\end{gathered}
$$

By setting $\delta=\operatorname{det} \delta_{j k}=1$, then the motion of a particle of mass M is governed by the following 2-velocity and 2-acceleration

$$
\left\{\begin{array}{l}
v_{j}=\frac{d r_{j}}{d \tau} \tag{4.11}\\
\gamma_{j}=\frac{d v_{j}}{d \tau}
\end{array}\right.
$$

where $\frac{d}{d \tau}$ designs the proper-time derivative in $\mathbb{R}^{\mathcal{A}} \oplus \mathbb{R}^{\mathcal{A}}$.
In partial derivatives notation, we write

$$
\begin{equation*}
\partial_{j}=\frac{\partial}{\partial r_{j}}=\partial_{r_{j}} \quad j=1,2 \tag{4.12}
\end{equation*}
$$

In the integral triad, we write

$$
\begin{equation*}
\int_{\mathcal{A}_{\mathbb{R}}^{2}} d r \equiv \int d^{2} r=\int \sqrt{\delta} d^{2} r \tag{4.13}
\end{equation*}
$$

For n-dimensional Euclidean space, the above expression is written as

$$
\int_{\mathcal{A}_{\mathbb{R}}^{n}} d r \equiv \int d^{n} r=\int \sqrt{\delta} d^{n} r
$$

and v_{j} and γ_{j}, (with $j=1,2, \ldots, n$) are the n-velocity and the n-acceleration of the particle.
In Clifford algebra differential triads notation, for any open U in X
and

$$
\begin{gather*}
d_{U}^{C} R \equiv d_{U}^{C}(r+l c t) \equiv d_{U} r+l c d_{U} t \equiv d r+l c d t \tag{4.14}\\
d_{U}^{C} R^{2}=d_{U} r^{2}-c^{2} d_{U} t^{2} \tag{4.15}
\end{gather*}
$$

For τ as the proper-time of the particle and using initial condition (assuming that $d_{U} r^{2}=0$) , expressions (4.14) and (4.15) become

$$
\begin{equation*}
d_{U}^{C} R_{0}=d r_{0}+l c d \tau, d_{U}^{C} R_{o}^{2}=-c^{2} d_{U} \tau^{2} \tag{4.16}
\end{equation*}
$$

It follows that, for a space-time interval, we have $d_{U}^{C} R_{0}^{2}=d_{U}^{C} R^{2}$ so that

$$
\begin{equation*}
-c^{2} d_{U} \tau^{2}=d_{U} r^{2}-c^{2} d_{U} \tau^{2} \tag{4.17}
\end{equation*}
$$

In other terms, for $d_{U} r=v d_{U} \tau$ expression (4.17) becomes

$$
\begin{equation*}
c^{2} d_{U} \tau^{2}=c^{2} d_{U} \tau^{2}\left(1-\frac{v^{2}}{c^{2}}\right) \tag{4.18}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\Gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{4.19}
\end{equation*}
$$

Then we get the famous dilatation formula

$$
\begin{equation*}
d \tau \equiv d_{U} \tau=\Gamma d_{U} \tau \tag{4.20}
\end{equation*}
$$

In terms of proper-time, the proper velocity becomes

$$
\begin{equation*}
V=\frac{d^{C} R}{d \tau}=\frac{d r}{d t} \frac{d t}{d \tau}+l c \frac{d t}{d \tau}=v \frac{d t}{d \tau}+l c \frac{d t}{d \tau}=\Gamma(v+l c) \tag{4.21}
\end{equation*}
$$

From (4.21), we easily obtain

$$
\begin{equation*}
V^{2}=\left(\frac{d^{C_{R}}}{d \tau}\right)^{2}=\Gamma^{2}(v+l c)^{2}=\Gamma^{2}\left(v^{2}-c^{2}\right), v l c=-l c v \tag{4.22}
\end{equation*}
$$

where $V^{2}=-c^{2}$ and the fact that l anticommutes with each component of v and $l^{2}=-1$.
If M designs a massless particle, then the linear momentum is

$$
P=\Gamma(M v+M l c)
$$

so that

$$
\begin{equation*}
P^{2}=-M^{2} V^{2} \tag{4.23}
\end{equation*}
$$

By setting

$$
\begin{equation*}
p=\Gamma M v \text { and } E=\Gamma M c^{2} \tag{4.24}
\end{equation*}
$$

then p and E are respectively the relativistic linear momentum and the total energy. It follows that

$$
\begin{equation*}
P=p+\frac{E}{c} l \tag{4.25}
\end{equation*}
$$

If we set $V_{\mu}=\frac{d^{C} R_{\mu}}{d \tau}$, then the motion of free particle with mass M is governed by the equation

$$
\begin{gathered}
\gamma_{\mu}=\frac{V_{\mu}}{d \tau}=0 \\
\text { With } \mu=1,2,3
\end{gathered}
$$

where V_{μ} is the 4-velocity and γ_{μ} the 4 -acceleration.
We can also write

$$
\begin{equation*}
V=\frac{d^{C} R}{d \tau} \quad \text { and } \quad \gamma=\frac{d^{C} V}{d \tau} \tag{4.26}
\end{equation*}
$$

where $\frac{d^{C}}{d \tau}$ designs the proper-time derivative in $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)$.
Using partial derivatives, we obtain :

$$
\begin{equation*}
\partial_{\mu}^{C} \equiv \frac{\partial^{C}}{\partial \eta_{\mu}} \equiv \partial_{\eta_{\mu}}^{C}=l \partial_{t}+e_{1} \partial_{r_{1}}+e_{1} \partial_{r_{2}}=l \partial_{t}+\nabla \tag{4.27}
\end{equation*}
$$

where $\nabla=e_{1} \partial_{r_{1}}+e_{1} \partial_{r_{2}}$ is the space gradient operator and ∂_{μ}^{C} is the space-time gradient operator. Consequently, we obtain

$$
\left(\partial_{\mu}^{C}\right)^{2}=l^{2} \partial_{t}^{2}+\nabla^{2}+l \partial_{t} \nabla+\nabla l \partial_{t}=-\partial_{t}^{2}+\nabla^{2}+l \partial_{t} \nabla-l \nabla \partial_{t}=-\partial_{t}^{2}+\nabla^{2}+l \partial_{t} \nabla-l \partial_{t} \nabla
$$

In other terms we have

$$
\begin{equation*}
\left(\partial_{\mu}^{C}\right)^{2}=-\partial_{t}^{2}+\nabla^{2} \tag{4.28}
\end{equation*}
$$

where l anticommutes with each component of ∇ and $l^{2}=-1$.
Thus, we set

$$
\begin{equation*}
\square_{\eta}^{C}=-\left(\partial_{\eta_{\mu}}^{C}\right)^{2}=\nabla^{2}-\partial_{t}^{2} \tag{4.29}
\end{equation*}
$$

and say that \square_{η}^{C} is the Clifford d'Alembertian operator on scalars (or on multivectors).
For a (real) free massive scalar (or multivector) field Ψ, then we set

$$
\begin{equation*}
\partial_{\eta}^{C} \Psi=l M \Psi \text { or } \partial_{\eta}^{C} \Psi=l l M \Psi \tag{4.30}
\end{equation*}
$$

where I is the identity matrix and observe that

$$
\begin{equation*}
\left(\partial_{\eta}^{C}\right)^{2}=-M^{2} \quad \Leftrightarrow\left(-\partial_{t}^{2}+\nabla^{2}\right) \Psi=-M^{2} \Psi \Leftrightarrow\left(\nabla^{2}-\partial_{t}^{2}\right) \Psi=-M^{2} \Psi \tag{4.31}
\end{equation*}
$$

Using (4.29), we obtain the Clifford Klein-Gordon equation

$$
\begin{equation*}
\left(\square_{\eta}^{C}-M^{2}\right) \Psi=0 \tag{4.32}
\end{equation*}
$$

The Pythagorean distance measure (or Riemann metric) in $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)$ is given by

$$
d S^{2}=d r^{2}-c^{2} d t^{2}=d S^{2}=d r_{1}^{2}+d r_{2}^{2}-c^{2} d t^{2}
$$

Using matrix and tensor notations, we obtain respectively

And

$$
d s^{2}=\left(d r_{1}, d r_{2}, c d t\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
d r_{1} \\
d r_{2} \\
c d t
\end{array}\right)
$$

$$
d S^{2}=g^{\mu \varepsilon} d \eta_{\mu} d \eta_{\varepsilon}, \quad \mu, \varepsilon=1,2,3
$$

with $g=\operatorname{det}_{\mu \varepsilon}=-1$. Using (4.29), thus it is clear that

$$
\begin{equation*}
\square_{\eta}^{C}=g^{\mu \varepsilon} \nabla_{\mu} \nabla_{\varepsilon}-\partial_{t}^{2} \tag{4.33}
\end{equation*}
$$

and say that \square_{η}^{C} is the Clifford d'Alambertian operator associated to the Riemann metric $g^{\mu \varepsilon}$.
In integral triad form in $C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)$, we write

$$
\int_{C l_{2,0}\left(\mathcal{A}_{\mathbb{R}}\right)} d r \equiv \int d^{C} \eta_{\mu}=\int \sqrt{g} d^{3} \eta
$$

5. Conclusion

We have studied differential triads as basic notions through which fundamental concepts of abstract differential geometry were constructed. We have constructed Clifford differential triads with the help of quadratic differential triads. We have come up with category of Clifford differential triads determined through the category of differential triads or category of quadratic differential triads. Some physics applications in special relativity were suggested.

REFERENCES

[1] RafalAblamowich, Garret Sobczyk, Lectures on Clifford(Geometric) Algebras and Applications. Birkhauser, Berlin, 2004.
[2] A. Cortella ,Algèbre de Clifford, Journal of Algebra 314, p.252-266, 2007.
[3] A. Crumeryolle ,Orthogonal and Symplectic Clifford Algebras, Spinor structures, Kluwer Academic Publishers, Dordrecht, 1990.
[4] M. Fragoulopoulou, Topological Algebras with Involution, North-Holland, Am-sterdam, 2005.
[5] R Godermont, Topologie algébrique et théorie des faisceaux , Harmann, Paris, 2002.
[6] M.H. Papatriantafillou, On the Rham Complex In Abstract Spaces, Journal of Mathematical Sciences, Vol. 95, No 6, 1999.
[7] M. Gonzato ,Les algèbres de Clifford sur R et G , France, 2005..
[8] H. Herich - G. Stecker ,Category theory , Boston, 1973.
[9] M. Kashiwara - P. Schapira Categories and sheaves ,Spinger, 2006.
[10] A. Mallios, Geometry of Vector sheaves . An axiomatic approach to Differential Geometric , Volume I: Vector sheaves, General Theory, Kluwer Academic Publishers Dordrecht, 1998.
[11] A. Mallios ,Geometry of Vector sheaves . An axiomatic approach to Differential Geometric.Examples and Applications, Kluwer Academic Publishers Dordrecht, 1998.
[12] A. Mallios ,Modern Differential Geometry in Gauge theory, Volume I: Maxwell Fields. Biakhäuser , Boston, 2006.
[13] A. Mallios - I. Raptis ,FinitoryCech-de Rhamcohomology , Int. J. Theor. Phys. 41 (2002), 1857-1902
[14] M. H. Papatrianfillou, The Category of Differential Triads, Proceedings of, the 4th Panhellenic Conference on Geometry (Patras, 1999). Bull. Greek Math. Soc. 44 (2000), 129-141.
[15]G. K Pedersen,.C_-Algebras and their Automorphism Groups. Academic Press. (1979).
[16] R. S. Pierce, Associative Algebras, Springer-Verlag, New-York, 1982.
[17] P. Schapira, Algebra and Topology, http:www.math.jussien.fr/shapira/ lectnotes, 1/9/2011, v2.
[18] R. Sikorski, Differential Modules, Colloq. Math. 24 (1971), 45-70.
[19] P. Revoy ,Algèbre de Clifford d'un polynôme, Advances in Applied Clifford Agebras 3. n̊1, Montpellier , France 1993.
[20] E. Vassillou, Geometry of Principal sheaves , Dordrecht, Springer, 2005.
[21] E. B. Vinberg ,A Course in Algebra, American Mathematical Society, USA, 2003.
[22]S. H. Weintraub, Representation Theory of Finite Groups, Algebra and Arithmetic, volume 59 de Graduate Studies in Mathematics. American Mathematical Society, USA, 2003.
[23]C. A. Weibel, An Introduction to Homological Algebra, volume 38 de Cambridge studies in advanced mathematics. Cambridge University Press. (1997).
[24]T.Yokonuma, Tensor Spaces and Exterior Algebra, Cambridge University Press, Cambridge, 1975.
[25] R. Sikorski, Differential modules, Colloq. Math, 24, 45-70 (1971).

