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 ARTICLE INFO   ABSTRACT 
 

 

In this research paper, differential triads over a topological space � are defined as objects 
of the Cartesian product category   ��� ×� �� ×� ���� over the same fixed topological 

space X.  From differential triads sheaves  ����  , ���, Ω
��

� and ����  , ���, Ω
��

� we defined 

morphisms of differential triads using a differential morphism  ���: ��
��

→ �Ω
��

, where 
                                                      ��

��
= �������

����, ���� and  �Ω
��

= ��������
�Ω� , Ω��.  From the quadratic forms, we 

                                                           determined quadratic differential triads and Clifford differential triads. 
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1. INTRODUCTION 
 
We consider X as a topological space (see[4] &[5]), Ω� as a sheaf of (differential) ��-modules over X, �� as a  derivative map 

like the �� −sheaf morphism which is also �� −linear, where � = �ℝ ≡ (ℝ, �, �) ��� ℂ ≡ (ℂ, �, �)� is respectively the sheaf 

of real numbers and  the sheaf of complex numbers and �� the sheaf of unital � −algebras over X  (see[10], [11], [12] &[13]).  
The triplet                   

               ���  , ��, Ω
�

�                                                                                     (1.1)                                     

which satisfies, for any open U in X, the Leibniz (product) rule [6] 
 ��(�. �) = �. ��(�) + �. ��(�)                                                                        (1.2)                                      

with  �, � ∈ ��  ,  and  ��: �� → Ω�  is continuous. We set 
��� = (��, ��, Ω�)                                                                              (1.3)   

and say that ���  is a differential triad relative to  (�, ��) . If  ���� = (���, ���, Ω��)  and  ���� = ����, ���, Ω��� are two 

differential triads respectively,  relative to (�, ���) and ��, ����, then a morphism of differential triads between ���� and ���� 

(or simply from ���� to  ���� ) is the following triplet  

   �ℎ��

��
, ��

��
, ℎΩ�

��
�                                                                                     (1.4) 

where ℎ��

��
∈ �������

����, ����  and ℎΩ�

��
∈ ��������

�Ω��, Ω���  are continuous maps and  ��
��

  is such that for any open U in 

X we have  

                                                                           ��
��

�ℎ��

��
� =  ℎΩ�

��
                                                   (1.5) 

We design by ����  the category of sheaves of unital ��-algebras over  �  and ����� the category of sheaves of  
(differential) modules over X, where �� = (ℝ� �� ℂ�) , with   ℝ� = (ℝ, �, �) the sheaf of real numbers and ℂ� = (ℂ, �, �) the 
sheaf of complex numbers over X (see[8]&[9]).  
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The set of differentials over   � ∈ ��� is represented by  �����  , it is also considered as a category of differential morphisms. Let 
us consider the triplet (see[25]) 
 

                                            (����, �����, �����)                                                                      (1.6) 
 
such that, for any   ��� ∈ ��(����) ,  there exist  ��� ∈ �����  and  Ω�� ∈ ��(�����)  satisfying  the Leibniz (product) rule 
 

���(��. �′�) = ��. ���(�′�) + �′�. ���(��)                                                    (1.7) 
 
with  ��, �′� ∈ ��� ≡ ��(�),   where  ���: ��� → Ω�� ≡ Ω�(�)  is continuous and ��-linear. The differential triad  ��� over  
(�, ��)  is given by 
 

��� = (��, ��, Ω�)                                                                      (1.8) 
 

The application  ��
�: ���� → �����  is a functor defined, for any ���, ��� ∈ ��(����) and  ℎ��

��
∈ ���

��
 as follows  

 

��
�|���

=  ���  and   ��
�|

���

�� =  ��
��

                                                  (1.9) 

 

where ���

��
= �������

����, ����  and  ��
��

: ���

��
→ ���

��
 is a continuous map , with �Ω�

��
= ��������

�Ω��, Ω���. The symbol  

“│ ” designs the restriction, and we say in this case that the triplets  
 

      (���  , ���, Ω��)  and    ����

��
, ��

��
, ���

��
�                                             (1.10)  

 
are respectively differential triads in ��(��� ×� �� ×� ����) and ���(��� ×� �� ×� ����). The functor given by 
��

�: ���� → �����  is a differential triad functor over X. We have the following commutative diagram: 
 

���                

���
��          Ω�� 

���
�є��⃖�������

  ↓                                ↓ ���
�є��⃖�������

 

���                 
���
��         Ω�� 

 

For this regard, we have the following inductive limit                 

  

���
�є��⃖�������

   �  ���  =   ���
�є��⃖�������

   �   ���                                                           (1.11) 

 

The differential triads ���� and their morphisms ����
��

 with i,j = 1,2,3,… represent the category which is  denoted by ������ and 
called the category of differential triads over X (see[14]). 
 
The same notions can be generalized over categories ����� and ��� and we attend to construct the category of differential triads 
over  ����� and TOP, respectively denoted, by  
 
                                           ����������

    and   �������� = �����                                                                                         

 
with                                        ������  ⊆  ����� �����  ⊆  DiffT. 

 
A complex of free left (resp. right) �-modules is a sequence of left (resp. right) the following �-homomorphisms (see[6]) 

                                           Ω∗ ≡ ⋯      
����

�⎯�  Ω�   
��

→ Ω���  
��� �

�⎯�   …                                                     (1.12) 
between left (resp. right) �-modules Ω�  and Ω���  which satisfy, for any open U in X,  
 

�� ��� �(�) ⊆ ���  ��(�), �. �. , ��
� � ��

�� � = 0�                                     (1.13) 
∀� ∈ ℤ 

 
Regarding the above composition (1.13), where by definition 
 

 �� =  �, �� = �                                                                      (1.14) 
                                                                                        for any  � ≥ 1                
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where the symbol d designs the differential �-homomorphism. 
 
If we specify the order of the set Ω of differential forms (sheaf of differential �-modules) by setting  
 

Ω� = �  and    Ω�  ≡ (Ω�)�  =  ⋀ �Ω�                                                 (1.15) 
 
where  ⋀ ≡ ⋀ �  is the exterior (the skew symmetric homological tensor ) product,  for any  � ≥ 1. We have, more explicitly 
 

�
Ω� = �  ⋀  Ω

Ω� = �  ⋀  Ω�⋀ Ω�
�                                                                       (1.16) 

 
 

 
 
2. The quadratic differential triads 
 

Let ��� be a differential triad. If  ���, ���
�  and �Ω� �Ω� � are two �� -quadratic spaces, with ��� : �� → �� and ��� : Ω� →

Ω� two quadratic forms, then the triplet  ����, ���
�, ��, �Ω� �Ω� ��  is an ��-quadratic differential triad iff the following relation 

is verified  
 

  �Ω�
 o  �� =  ���

                                                                                        (2.1)           

 
According to the above expression, it follows that ��� 

represents a differential quadratic form. The quadratic differential triad 

relative to  (�, ��) is determined as  
 

 ���� ≡ ((�� , ���  ), �� , (Ω�, �Ω� ))                                                            (2.2)  

 

Here ����� and ����� are two quadratic differential triads relative to (�, ���) and ��, ����, respectively , with i, j = 1 ,2, …A 

morphism of quadratic differential triads from ����� into q���� is the triplet   

 

   �ℎ��

��
, ��

��
, ℎ��

��
�                                                                        (2.3) 

 

where ℎ��

��
∈ ���

��
=  �����

����, ���� and ℎ��

��
∈ ���

��
=  �����

�Ω��, Ω��� and moreover the following relation 

 

                   ��
��

�ℎ��

��
� = ℎΩ�

��
                                                                          (2.4) 

 

satisfies the Leibniz (product) rule, as given in (1.7). We observe that the triplet ����

��
, ��

��
, ���

��
� represents the differential triad. 

The categories of differential triads and quadratic differential triads over X are denoted respectively by 
 

������ ,  Q������                                                                      (2.5) 
 (��) In the context of sheaves over categories, we intend to replace the topological space X, respectively, by the categories  
����� and TOP so that we determine, respectively, the categories of quadratic differential triads over ����� and TOP, denoted 
by 
 
 

Q����������
,    Q�������� ≡ QDiffT                                                (2.6) 

 
(��) Is it possible to express a functor  �: ����� → ������    as follows  
 

�(�, �, Ω) = �(�, ��), �, (Ω, ��)� and  ��ℎ�
��

, ���, ℎ�
��

� = �ℎ�
��

, ���, ℎ�
��

�           (2.7) 
 
where ��  and �Ω satisfy  the composition condition 

�Ω o � = ��  . 
 
(��) Our main concern is to find out what kind of pairs  (��, ��) that can satisfy the above expression �Ω o � = �� ?   

Knowing that from a given pair  (�, Ω), we can define several pairs of quadratic spaces , i.e.,  ��, ��
� �,  �Ω, ��

� � , where  i = 
1,2,3,…  
 
To answer the above concern, we need to fix a (differential) � -quadratic form �̇�: Ω → �   such that   
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∫ �̇� =  ���                                                                                (2.8) 
 
where the symbol  ∫ �̇�  designs the “integral” of the differential form �Ω̇ , with ���  the primitive function of �Ω̇. In other terms, 
the primitive function is 
 

                                                          ��� =  �� +  �   ,    � ∈ �ℝ                                                               (2.9) 
 
(��) Designing by ��  the underlying of  � in � and then obtain an equivalence relation, ~, defined in  ����(�) ≡
����(�, �)   as follows 
 

        ��
�   ~ ��

�
      ⟺    ��

�  − ��
�

= �    with   � ∈ ��                                    (2.10) 
 
(��) Referring to (��), from (differential) � -quadratic form �̇�: Ω → � , we determine a subcategory   �̇�����  of  ������ 

whose objects �(�, ���), �, (Ω, �̇�)� verify  at the same time, expressions  (2.8), (2.9) and the following expression 
 

�̇� � � =   ���                                                                         (2.11) 
 

Let us design by ��� and �Ω̇ the set of differential quadratic forms  �̇�: Ω → �,… and the set of quadratic forms ���  : �  →   � , 
…, respectively. By setting 
 

∫ : �̇� → �̇�    ,   �̇� →  ∫ �̇� =  ���                                                  (2.12) 
 
Then the triplet                  

                                          ���� = ��̇�, ∫, ����                                                             (2.13) 
 
represents the quadratic integral triad over � if and only if the following inductive limit is verified 
 

∫
�

= ���
�є��⃖�������

 ∫
�

= ���
�є��⃖�������

 (��)� � =  (��)� � 

 

                                          (2.14) 

 
where � satisfies the Leibniz product rule. According to the terminology of (1.6), we can write expression (2.13) as 
 

 ����� = (������, ����, �����)                                                            (2.15) 
 
where ���� represents the set (or the category) of integral triads,  ����� is the category of quadratic differential modules and 
����� is the category of algebras, all over X. 
 

Considering the linear mapping �̇: ����� →  �̇����� ⊆  ������  which clearly defines an operator satisfying the expressions 

(2.8), (2.9) and (2.12), we observe that  �̇ is a quadratic functorial operator.     
                                         
Theorem 2.1 The quadratic functorial operator �̇ is a covariant functor. 
 

 Proof. Let ��� , ���, ��� ∈ ��(�����)  and   ����� ∈ �������, ����, ����� ∈ ���(���, ���)   and  ����� ∈ �������, ����. 

Let us apply  the operator �̇ on �����, so that 
 

(1) �̇(�����◦ m����) = m�̇����◦ m�̇����  = �̇(m����)◦�̇(m����) 

(2) �̇(�����
) = ���̇���

 = ���̇(���)               

 
By convenience, we set the quadratic functorial operator as  
 

                                            �̇����� =< (����� , �̇ = {��� , �̇Ω}) >                                                     (2.16) 
  
where {�̇� , �̇Ω} satidfies (2.1). 
 
Analogously, we can construct the quadratic functor operators as  
 

              �̇�����
∶  ����������

→ �̇����������
                                                     (2.17)   

 
and 
 

                  �̇���  ∶  ��������   →   �̇��������                                                          (2.18) 
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For ��
��

= �������, ���  and  �
Ω�
��

= �����Ω�
�, Ω�

��,  the triplet  ���
��

, ���, ��
��

� is a differential triad over X, ����� or TOP 

then consequently the quadratic functorial operator �̇ acts on ���
��

, ���, ��
��

� so that the quadratic differential triad becomes 
 

 �(̇ ����) =  �̇���� = ����
��

, �̇
��

��� , ���, ��
��
��

, �̇
�

��
�� ��                                        (2.19) 

3. The main result 
 

Our purpose now is to study the methods under which we associate the quadratic differential triad over  ��, ���, ���
�� denoted 

by  ���� = ����, ���
�, ��, �Ω�, ���

��  to a Clifford differential triad over ��, ���, ���
�� denoted by 

���� = �����, ���
�, ��

�, ��Ω�, ���
��.  Designing the categories of Clifford differential triads over X, ����� and TOP by 

C������ , C����������
, and C�������� and letting ���, ���

� be a quadratic space, the Clifford algebra of ���, ���
� or simply, 

of E, is as a pair (��, ��) formed by an ��–algebra   �� and an �-linear map ��: ��  →  �� such that , for any open  U ⊆ X , we 
have  (see[1], [2] ,[3] &[7]) 
 

         ��(�)� = ���
(�). 1��

                                                                           (3.1)               

 
where  � ∈ �� ≡ �(�)  and 1��

 designs the unity in  �� ≡ �(�) . Also, for any   ��-algebra ��  and all ��–linear map   

��: ��   →   ��  such that, for any open U ⊆  X , we have 
 

   ��(�)� = ���
(�). 1��

                                                                                (3.2) 

 
where   � ∈ ��, there exists a unique morphism  ��: ��   →  �� of  ��–algebras verifying  ����� = ��. The Clifford ��–algebra 
(C�, ��) is denoted by 
 

                        �� ≡ �����, ���
� ≡ ������, ���

�, ���                                                    (3.3) 

Analogously, we construct Clifford ��–algebra through another approach, designing by  �����
� the ��–ideal of the tensor  ��–

algebra T(��) generated , for any open U ⊆X , by the elements of the form 
 

   (�⨂�). ���
(�). 1�(��), � ∈ ��                                                       (3.4) 

 

We restrict the graduation of  �(��) on Z/(2), the ��–ideal �����
� is homogeneous and the quotient 

 

                                           �(��)/�����
�                                                                                  (3.5)            

 
is a graded �� −algebra on Z/(2) , such that the homogeneous elements of degrees o and 1 are easy to describe.  
We design by   
 

               ��(��) ≡ ��(���
)  and   ��(��) ≡ ��(���

)                                           (3.6) 

respectively, the sub ��–algebra of homogeneous elements of degree 0 and the sub �� −module (or sub-vector sheaf) of 
homogenous elements of degree 1. We set 
 

�����, ���
��(��)/�����

�                                                           (3.7)                                  

 

and the canonical projection  ��: �(��) → �����, ���
�  is such that , for any open U ⊆ X , we have 

 

                                                  ���(�)�
�

= ���
(�). 1�(��)                                                              (3.8)  

 
with  � ∈ �� . As  �(��) = ��(��) + ��(��) , we observe that    
 

 �����, ���
� = �������, ����

� + �������, ����
�                                          (3.9) 

 

where  �������, ����
� = �����(���)�  and  �������, ����

� = �����(���)�. It follows that ����� , ���
� is a Z/(2) –graded ��-

algebra. 
 
Theorem 3.1   Let ��: �� → �� be an ��–linear map such that , for any open U ⊆ X , we have  
 

                                                      ���(�)�
�

= ���
(�). 1��

, � ∈ ��                                                        (3.10) 
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Then, there exists a unique ��–algebra morphism  ��: �� → ��  such that 
 

                                                     ���(�)�
�

= �����(�)�                                                  (3.11) 

 
Proof. By definition of tensor ��–algebra, there exists a unique map  
 

��̅: �(��) → �� 
 
which extends  �� , then , for � ∈ ��, we have (see[23] & [24]) 
 

��̅��⨂� − ���
(�). 1�(��)� = ��̅(�⨂�) − ���

(�). 1�(��)  

                                      = ��̅(�)��̅(�) − ���
(�). 1�(��)                    

                                      = ��(�)��(�) − ���
(�). �� ����1�(��)�� 

                                      = ���(�)�
�

− ���
(�). 1��

    

 

It follows that ����(��)� = 0 and  �(��) ⊂ ���(��). For these reasons, there exists a unique  ��: �� → ��  such that  

�� ∘  �� = ��̅  and  ��̅ ∘  �� = �� 
 
where ��(�) is the contraction  of  ��̅(�), for any � ∈ ��, with U ⊆ X open. 
 
Setting  ���

(�) = ���
(�) , hence, for  � ∈ ��(��) , we get  

 
�� = �������

(�). 1��
              

 
For a quadratic differential triad ���� ≡ ((�� , ���  ), �� , (Ω�, �Ω� ) over (�, ��),  the Clifford differential triad relative is 

represented by the triplet 
 

�����, ���
�, ��

� , ��Ω�, ���
��                                                              (3.12)  

such that  
 

(a)     ϕ: ���, ���
� → ��   and  Ψ: �Ω�, ���

� → ��  are linear maps satisfying 

�
ϕ(�)ϕ(�) = −���

(�). 1,   � ∈ ��

ψ(�)ψ(�) = −���
(�). 1,   � ∈ Ω�

�                                                (3.13) 

(b)    Φ and ψ extend uniquely to  ��: ���, ���
� → �� and  ��: ��Ω�, ���

� → Ω�   

 
We set  

                            ���� = �����, ���
�, ��

� , ��Ω�, ���
��                                           (3.14) 

 
where C designs the functorial morphism which transforms a quadratic differential triad ���� to a Clifford differential triad Cd�� 
and  ��

�  satisfies the Leibniz (product) rule as given in (1.7). For convenience , we write  
 

���� = ��(��), ��
�  , �(Ω�)�                                                   (3.15) 

 

By Considering  ���� = ��(���), ���
�  , �(Ω��)�   and  ���� = �������, ���

�  , ��Ω���� as two Clifford differential triads, the 

morphism from C��� to  C��� is the triplet 

 

    ��ℎ��

��
, ��

���
, �ℎ��

��
 �                                                 (3.16) 

 

where  �ℎ��

��
∈ �����

��(���), �������  and   �ℎΩ�

��
∈ �����

��(Ω��), ��Ω����  are assumed to be continuous maps and   

��
���

 satisfies the Leibniz (product) rule which verifies for any open U in X, the relation  
 

                                        ��
���

��ℎ��

��
� =  �ℎ��

��
                                                  (3.17) 

 
From the above concepts, it follows that  

�ℎ��

��
∘  ���

� =  ���
� ∘ �ℎ��

��
                                             (3.18) 
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so that we write    

     ��
��

(�ℎ��

��
)|{��} =  ��ℎ��

��
∘  ���

� �(��) = ����
� ∘ �ℎ��

��
�(��)                 (3.19) 

 
for any �� ∈ �(���). Since the category of Clifford differential triads is denoted by CDiffT , clearly the mapping   �: ������ →
������ behaves nicely as a differential triad functor. Consequently, the mapping  �: ����� → ������  is the Clifford 
differential triad functor regarding the following composition relation  
 

                                                                  � � � = �                                                                               (3.20)        
 
From which one writes 
 

� ����, ���
�, ��, �Ω�

� , ���
� �� = �����, ���

�, ��
�, � �Ω�

� , ���
� ��                         (3.21) 

 
By fixing a common basis topological space X ,then we design the categories of differential triads, quadratic differential triads and 
Clifford differential triads, respectively, by ������ , Q������, C������ . A complex of free left (resp. right) �(�)-modules is a 
sequence of left (resp. right) the following �(�)-homomorphisms  
 

                                        �(Ω∗) ≡ ⋯      
��,���

�⎯⎯�  �(Ω�)   
��,�

��  �(Ω���)  
��,�� �

�⎯⎯�   …                                   (3.22) 
 
between left (resp. right) �(�)-modules �(Ω�) and �(Ω���)  which satisfy, for any open U in X  
 

�� ��,�� �(�) ⊆ ���  ��,�(�), �. �. , ��
�,����

�,�� � = 0�                              (3.23) 
∀� ∈ ℤ 

 
Regarding the above composition (3.23), where by definition 
 

 ��,� =  ��, ��,� = ��                                                               (3.24) 
 
for any  � ≥ 1, where the symbol d designs the differential �-homomorphism. 
 
If we specify the order of the set Ω of differential forms (sheaf of differential �-modules) by setting 
 

                      �(Ω�) = �(�),  �(Ω�) ≡ �(Ω�)� = �(⋀�Ω�)                                                 (3.25) 
 
where ∧ ≡ ∧� be the exterior (the skew symmetric homological tensor ) product,  for any   
 
 i  ≥ 1. We have, more explicitly 
 

�(Ω�) = �(�) ⋀ �(Ω) , �(Ω�) = �(�) ⋀ �(Ω�)⋀ �(Ω�)                                       (3.26)  
 
A complex of  free left (resp. right) �(�)-modules denoted by  
 

�(Ω∗) ≡…       
ʃ∫�� �
�⎯� �(Ω���)    

ʃ∫�� �
�⎯� �(Ω�)   

ʃ∫�
→   …                                            (3.27)                             

 

is a sequence of left (resp. right) �(�)-homomorphisms ∫
���

∶  �(Ω���)    → �(Ω�) between left (resp. right) �(�)-modules 

which satisfy, for any open U in X  
 

��∫
���,�

⊆ ���∫
�,�

  , i.e.,  ∫
�,�

�∫
���,�

= 0� ≡ 0                                     (3.28) 

 
for all  � ∈ ℤ  , where the symbol   ʃ  designs the integral �(�)-homomorphism.  By replacing �(Ω�) by ���� and  �(Ω�) by  
�(����), we obtain , respectively the complexe :  
 
         

                                           �(dT∗) ≡ ⋯      
����,���

�⎯⎯⎯⎯⎯�  �(���)   
����,�

�⎯⎯⎯�  �(�����)  
����,�� �

�⎯⎯⎯⎯⎯�   …    
                    
  
And 

�(���∗  ) ≡…       
�ʃ����
�⎯⎯⎯� �(��ʃ��)    

�ʃ����� �
�⎯⎯⎯⎯⎯� �(������)   

�ʃ����� �
�⎯⎯⎯⎯⎯�   …    
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We set  �(���) = �(��ʃ��)   within �(�)-isomorphism, and ����,� and �ʃ������ are morphisms, respectively, of Clifford 
differential triads and of Clifford integral triads, for all � ∈ ℤ. In other words, we have (see[15]) 
 

                                                            �ʃ������ � ����,� =  ��������                                                            (3.29) 

4. Applications 

We suggest some physics applications of Clifford differential triads by revisiting special relativity when we take into consideration 
a natural algebraic concept alternative to the Minkowski space-time. The two algebras considered are 

(�)�  �ℝ is the real underlying of the ℝ −algebra sheaf  �; 
 (�)�   ���,�(�ℝ)  is the 2 −dimensional Clifford �ℝ −algebra. 

 

Our approach consists to replace the unit imaginary   � = √−1   by an element ���� of   ���,���ℝ(�)� , where (�� , ��) is an 

�ℝ(�) −basis of �ℝ
� (�)  . In this case, an �ℝ(�) −basis of ���,���ℝ(�)�  is    

 
              (�, ��, ��, ����) ≡ (�, ��, ��, �)                                                                (4.1) 

 
where  ��

� = ��
� = � and  ���� = −���� , from which we clearly obtain     

�� = (����)� = �������� = −�������� = −��
���

� = −�                                         (4.2) 
  

and l is an alternative of � = √−1 . An element � in ��� ,�(�ℝ) is written as follows  
 

� = ��+ ���� + ���� + ��                                                                       (4.3) 
 
where  � ∈ �ℝ  ,  ���� + ���� ∈ �ℝ

�   ,  � ∈ �ℝ  and   �� ∈ ⋀��ℝ , i.e., we set  
 

���,�(�ℝ) = �ℝ ⨁ �ℝ
�  ⨁ ⋀ ��ℝ = ⋀ ��ℝ⨁⋀��ℝ⨁⋀��ℝ                                        (4.4) 

 
In short, one writes within  �ℝ −isomorphism   
 

                                                      ���,�(�ℝ) = ⋀�ℝ                                                                     (4.5) 
 
where ⋀�ℝ is the exterior �ℝ −algebra of �ℝ. 
 
For two vectors given by  � = ���� + ���� and  �′ = ��

��� + ��
��� in ���,�(�ℝ), one can check that their product called the Clifford 

(or geometric) product, is determined as follows  
 

� �� =  �. �� +  � ∧  �′                                                                 (4.6) 
 
where   �. �� = (����

� + ����
�)   and   � ∧  �� = (����

� − ����
�) � . 

 
The distance measure or metric over the space ���,�(�ℝ) is �. ��. Considering the following map  
 

��: (�ℝ⨁�ℝ)� → ���,�(�ℝ)� 
 
defined, for any open U in X, by  
 

��(��) ≡ ��(��, ��) ≔ (��, ��, ��, ��) ≡ ��                                                (4.7) 
 

with  � = �, 1,2,3  such that �� = � ,  �� =  �� , �� =  ��,  �� = � ∈ (�ℝ)�.                   
 
We observe that if  (��, ��) is (�ℝ)� −basis of  (�ℝ⨁�ℝ)� , then (�, ��, ��, ����) is (�ℝ)� −basis of ���,�(�ℝ)�. 
 
Using differential triad notation, we get 
 

                                    ���� ≔ ((�ℝ⨁�ℝ)�, �� , Ω�(�ℝ⨁�ℝ)�)                                          (4.8) 
and 

���� ≔ (���,�(�ℝ)�, ��
� , Ω�����,�(�ℝ)��)                                        (4.9) 

 
where ��

� designs the Clifford differentials.   
 
Considering the 2- real Euclidean differential triad, for any open U in X, we have 
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��(��, ��) = (����, ����) ≡ (���, ���) = ���
, � = 1,2                  (4.10) 

 
so that the Pythagorean distance measure (or metric) is written as 
 

��� = ���
� + ���

� 

��� = (���, ���) �
1 0
0 1

� �
���

���
� 

��� ≡ ���������, �, � = 1,2 

 
By setting  � = ������ = 1 , then the motion of a particle of mass M is governed by the following 2-velocity and 2-acceleration  

 

�
�� =

���

��

�� =
���

��

�                                                                     (4.11) 

 

where  
�

��
 designs the proper-time derivative in   ℝ�⨁ ℝ�  . 

 
In partial derivatives notation, we write 
 

                     �� =
�

���
= ���

    j = 1, 2                                                   (4.12)   

 
In the integral triad, we write 
 

∫
�ℝ

�   
 �� ≡ ∫ ��� = ∫ √����                                              (4.13) 

 
For n-dimensional Euclidean space, the above expression is written as 
 

∫
�ℝ

�  
 �� ≡ ∫ ��� = ∫ √���� 

 
and �� and ��, (with  j = 1, 2,...., n) are the n-velocity and the n-acceleration of the particle. 

 
In Clifford algebra differential triads notation, for any open U in X  
 

��
� � ≡ ��

� (� + ���) ≡ ��� + ����� ≡ �� + ����                                (4.14) 
and      

��
� �� = ���� − ������                                                    (4.15) 

 
For � as the proper-time of the particle and using initial condition (assuming that ���� = 0)  , expressions (4.14) and (4.15) 
become 

 
��

� �� = ��� + ����,  ��
� ��

� = −������                                     (4.16) 
 
It follows that, for a space-time interval , we have  ��

� ��
� = ��

� �� so that  
 

−������ = ���� − ������                                               (4.17) 
 
In other terms, for  ��� = ���� expression (4.17) becomes 
 

������ = ������ �1 −
��

���                                                                 (4.18) 

 
Setting  

Γ =
�

���
��

��

                                                                                       (4.19) 

Then we get the famous dilatation formula 
�� ≡ ��� = Γ���                                                                  (4.20) 

In terms of proper-time, the proper velocity becomes 
 

� =
���

��
=

��

��

��

��
+ ��

��

��
= �

��

��
+ ��

��

��
= Γ(� + ��)                                    (4.21) 
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From (4.21), we easily obtain 

�� = �
���

��
�

�

= Γ�(� + ��)� = Γ�(�� − ��),  ��� = −���                             (4.22) 

 
where  �� = −��  and the fact that l anticommutes with each component of  �  and  �� = −1. 
If M designs a massless particle, then the linear momentum is 
 

� = Γ(�� + ���) 
                                           

so that  
 

�� = −����                                                                        (4.23) 
 
By setting 
 

� = Γ��  and   � = Γ���                                                         (4.24) 
 
then  p and  E are respectively the relativistic  linear momentum and the total energy. It follows that  
 

� = � +
�

�
 �                                                                         (4.25) 

 

If we set �� =
����

��
 , then the motion of free particle with mass M is governed by the equation 

 

�� =
��

��
= 0 

With � = 1,2,3 
 
where �� is the 4-velocity and �� the 4-acceleration. 

 
We can also write  
 

                                                     � =
���

  ��   
     and    � =

���

��
                                                               (4.26)         

 

where  
��

��
  designs the proper-time derivative in ���,�(�ℝ). 

 
Using partial derivatives, we obtain : 
 

��
� ≡

��

���
≡ ���

� = ��� + �����
 + �����

= ��� + ∇                                   (4.27)         

 
where ∇ = �����

 + �����
 is the space gradient operator and ��

� is the space-time gradient operator. Consequently, we obtain 

 
(��

�)� = ����
� + ∇� + ���∇ + ∇��� = −��

� + ∇� + ���∇ − �∇�� = −��
� + ∇� + ���∇ − ���∇. 

 
In other terms we have 
 

                                                             (��
�)� = −��

� + ∇�                                                                  (4.28) 

 
where � anticommutes with each component of ∇ and �� = −1. 
 
Thus , we set                                              

                                                               □�
� =  −(���

� )� = ∇� − ��
�                                                         (4.29) 

 
and say that □�

�  is the Clifford d’Alembertian operator on scalars (or on multivectors). 

 
For a (real) free massive scalar (or multivector) field Ψ, then we set  
 

��
�� = ��� or  ��

�� = ����                                                    (4.30) 

 
where I is the identity matrix and observe that  
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                        (��
�)� = −��  ⟾   (−��

� + ∇�)Ψ = −���  ⟾  (∇� − ��
�)Ψ = −���                           (4.31)         

 
Using (4.29), we obtain the Clifford Klein-Gordon equation 
 

                                                                                (□�
�−��)� = 0                                                                          (4.32) 

 
The Pythagorean distance measure (or Riemann metric) in ���,�(�ℝ) is given by 
 

��� = ��� − ����� = ��� = ���
� + ���

� − ����� 
 
Using matrix and tensor notations, we obtain respectively  
 

��� = (���, ���, ���) �
1 0 0
0 1 0
0 0 −1

� �
���

���

���

� 

And                                                                   ��� = ���������,    �, � = 1,2,3 

 
with � = ������ =  −1. Using (4.29), thus it is clear that 

                                                     □�
� =  ���∇�∇� − ��

�                                                                       (4.33) 

 
and say that □�

�  is the Clifford d’Alambertian operator associated to the Riemann metric ���.  

In integral triad form in ���,�(�ℝ), we write 
 

∫
���,�(�ℝ) �� ≡ ∫ ���� = ∫ ����� 

 
5. Conclusion 

We have studied differential triads as basic notions through which fundamental concepts of abstract differential geometry were 
constructed. We have constructed Clifford differential triads with the help of quadratic differential triads. We have come up with 
category of Clifford differential triads determined through the category of differential triads or category of quadratic differential 
triads. Some physics applications in special relativity were suggested.  
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