

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 08, Issue, 11, pp.6421-6426, November, 2017

RESEARCH ARTICLE

A COMMON FIXED POINT THEOREM FOR COMPATIBLE MAPPINGS IN S METRIC SPACE

*Vijaya Lakshmi, G.

Department of Mathematics and Statistics, RBVRR Women's College, Narayanaguda, Hyderabad, Telangana, India

ARTICLE INFO ABSTRACT

Article History: Received 07th August, 2017 Received in revised form 28th September, 2017 Accepted 29th October, 2017 Published online 28th November, 2017 The aim of this paper is to present a common fixed point theorem in a S metric space which extends the results of P.C. Lohani and V.H. Bhadshah using the weaker conditions such as Weakly compatible and Associated sequence. Very recently Sedghi ,Shobe and Aliouche[14] introduced S –metric space as a generalization of metric space and several researchers have proved fixed point theorems for self maps of such spaces.

Key words:

Fixed point, Self maps, Compatible mappings, Weakly compatible, Associated sequence. AMS Mathematical Subject Classifications: 54H25, 47H10.

Copyright©2017, Vijaya Lakshmi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

G.Jungck gave a common fixed point theorem for commuting mapping maps, which generalizes the Banach's fixed point theorem. This result was further generalized and extended in various ways by many authors. S.Sessa [5] defined weak commutativity and proved common fixed point theorems for weakly commuting maps. Further G. Jungck [1] initiated the concept of compatible maps which is weaker than weakly commuting maps. After wards Jungck and Rhoades [4] defined weaker class of maps known as weakly compatible maps. *D*-metric spaces* by Sedghi,Shobe and Zhou [13] and most recently *S-metric spaces* by Sedghi, Shobe and Aliouche [24] were introduced .Also several fixed point theorems for self maps of S-metric spaces were established in recent years. For examples, see [11],[12],[19],[24] and [25].

In this we deal with S-metric spaces defined in [24] (Definition 2.1) as follows

The purpose of this paper is to prove a common fixed point theorem for four self maps using weakly compatible mappings.

Definitions and Preliminaries

1.1 Definition In this section we present some preliminary results needed for our purpose. We begin with **Definition** ([4]). Let X be a non empty set. An *S*-metric on X is a function S: $X^3 \rightarrow (0, \infty)$ that satisfies the conditions given below for x, y, z, w $\in X$

(i) $S(x, y, z) \geq 0$

(ii) S(x, y, z) = 0 if and only if x = y = zand (iii) $S(x, y, z) \leq S(x, x, w) + S(y, y, w) + (z, z, w)$

The pair (X, S) is called an *S*-metric space.

If (X, S) is an S-metric space it is shown in ([4], Lemma 2.5) that (2.2) S(x, x, y) = (y, y, x) for all $x, y \in X$ and as a consequence of (iii) of

1.2 Definition 2.1 and (2.2) we have (2.3) $S(x, x, y) \le 2.S(x, y, z) + S(x, y, z)$ for $x, y, z \in X$

A Sequence $\{x_n\}$ in (X, S) is said to

(i) Converge to x if to each $\varepsilon > 0$ there is a natural number n_0 such that $(x_n, x_n, x) < \varepsilon$ for all $n \ge n_0$ and

(ii) be a *Cauchy Sequence* if to each $\varepsilon > 0$ there is a natural number n_0 such that $S(x_n, x_n, x_m) < \varepsilon$ for all $m \ge n0$, $n \ge n0$. It is shown in ([4], Lemma 2.10 and Lemma 2.11) that in an S-metric space(X, S) if $\{xn\}$ converges to x then x is unique and that $\{xn\}$ is a Cauchy Sequence. An S-metric space is said to be *complete* if every Cauchy Sequence in it converges to a point in X. It is easy to prove :(2.4) If $\{x_n\}$ and $\{y_n\}$ in X are converging respectively to x and y in X then $\lim_{n\to\infty} S(x_n, x_n, y_n) = S(x, x, y)$ ([14],Lemma 2.12)

1.3 Definition. If f and g are mappings from a S metric space (X,S) into itself are called weakly commuting mappings on X, if $S(fgx, fgx, gfx) \leq S(fx, fx, gx)$ for all x in X.

1.4 Definition: Two self maps f and g of a S metric space (X,S) are said to be compatible mappings if $\lim_{n\to\infty} S(fgx_n, fgx_n, gfx_n) = 0$ Whenever $\langle x_n \rangle$ is a sequence in X such that $\lim_{n\to\infty} f x_n = \lim_{n\to\infty} g x_n = t$ for some $t \in X$. Clearly commuting mappings are weakly commuting, but the converse is not necessarily true.

1.5 Definition : Two self maps f and g of a S metric space (X,S) are said to be weakly compatible if they commute at their coincidence point that is if fu = gu for $u \in X$ then fgu = gfu. It is clear that every compatible pair is weakly compatible but its converse need not be true.

P.C Lohani and V H Badshah proved the following theorem.

Theorem (A)

Let P, Q, f and g be self mappings from a complete S metric space (X,S) into itself satisfying the following conditions

$f(x) \subset Q(x)$ and $g(x) \subset P(x)$	(a)
$S(fx, fx, gy) \leq \frac{\alpha S(Qy, Qy, gy)[1 + S(Px, Px, fx)]}{1 + S(Px, Px, Qy)} + \beta S(Px, Px, Qy) \text{ for all } x, y \text{ in } X \text{ when}$	$\operatorname{tre} \alpha, \beta \ge 0, \alpha + \beta < 1 \dots \dots$
One of P, Q, f and g is continuous	(c)
Pair (f, P) and (g, Q) are compatible on X	(d)

Then P, Q, f and g have a unique common fixed point in X.

Associated sequence Suppose P,Q ,f and g are self maps of a S metric space (X,S) satisfying the condition (1). Then for an arbitrary $x_0 \in X$ such that f $x_0 = Q x_1$ and for this point x_1 , there exist a point x_2 in X such that g $x_1 = P x_2$ and so on. Proceeding in the similar manner, we can define a sequence $\langle y_n \rangle$ in X such that $y_{2n} = f x_{2n} = Q y_{2n+1}$ and $y_{2n+1} = P x_{2n+2} = g x_{2n+1}$ for $n \ge 0$.

We shall call this sequence as an "Associated sequence of x₀" relative to the four self maps P, Q, f and g.

Lemma: Let P, Q, f and g be self mappings from a complete S metric space (X,S) into itself satisfying the condition (a) and(b)

$$f(x) \subset Q(x) \text{ and } g(x) \subset P(x)$$

$$S(fx, fx, gy) \leq \frac{\alpha S(Qy, Qy, gy)[1 + S(Px, Px, fx)]}{1 + S(Px, Px, Qy)} + \beta S(Px, Px, Qy) \text{ for all x,y in X where } \alpha, \beta \geq 0, \alpha + \beta < 1$$
(b)

Then the associated sequence $\langle y_n \rangle$ relative to four self maps is a Cauchy sequence in X.

Proof

From (2), we have

 $S(y_{2n}, y_{2n}, y_{2n+1}) = S(fx_{2n}, fx_{2n}, gx_{2n+1}) \le \frac{\alpha S(Qx_{2n+1}, Qx_{2n+1}, gx_{2n+1})[1+S(Px_{2n}, Px_{2n}, fx_{2n})]}{1+S(Px_{2n}, Px_{2n}, Qy_{2n+1})} + \beta S(Px_{2n}, Px_{2n}, Qy_{2n+1})$

This shows that the sequence $\langle y_n \rangle$ is a Cauchy sequence in X and since X is a complete S metric space ; it converges to a limit say $z \in X$

The converse of the lemma is not true that is P,Q, f and g are self maps of a S metric space (X,S) satisfying (a) and (b) even if for $x_0 \in X$ and for associated sequence of x_0 converges the S metric space(X,S) need not be complete.

Example: Let X =(-1,1) with d(x, y) = |x - y|

$$fx = gx = \begin{cases} \frac{1}{5} if - 1 < x < \frac{1}{6} \\ \frac{1}{6} if \frac{1}{6} \le x < 1 \end{cases}$$

$$Px = \begin{cases} \frac{1}{5} if - 1 < x < \frac{1}{6} \\ \frac{6x+5}{26} if \frac{1}{6} \le x < 1 \end{cases}$$

$$Qx = \begin{cases} \frac{1}{5} if - 1 < x < \frac{1}{6} \\ \frac{1}{2} - x if \frac{1}{6} \le x < 1 \end{cases}$$

Then $(X) = g(X) = \{\frac{1}{5}, \frac{1}{6}\}$, while $P(X) = \{\frac{1}{5} \cup [\frac{1}{6}, \frac{11}{36})\}$, $Q(X) = \{\frac{1}{5} \cup [\frac{1}{6}, \frac{-2}{3})\}$ so that $f(x) \subset Q(x)$ and $g(x) \subset P(x)$ proving the condition (a). Clearly (X, d) is not a complete metric space. It is easy to prove that the associated sequence $f x_0$, $g x_1$, $f x_2$, $g x_3$, $-----, f x_{2n}$, $g x_{2n+1}$, converges to $\frac{1}{5}$ if $-1 < x < \frac{1}{6}$ or $\frac{1}{6} \le x < 1$, the associated sequence is converges to $\frac{1}{6}$. Now we prove our theorem.

Theorem (B)

Let P,Q, f and g be self mappings from a complete S metric space (X,S) into itself satisfying the following conditions

$$f(x) \subset Q(x) \text{ and } g(x) \subset P(x)$$

$$S(fx, fx, gy) \leq \frac{\alpha S(Qy, Qy, gy)[1 + S(Px, Px, fx)]}{1 + S(Px, Px, Qy)} + \beta S(Px, Px, Qy) \text{ for all } x, y \text{ in } X \text{ where } \alpha, \beta \geq 0, \alpha + \beta < 1 \dots (f')$$

and the conditions .The pairs (f, P)and (g, Q) are weakly compatible and One of P, Q, f and g is continuous also the associated sequence relative to four self maps P, Q, f and g such that the sequence $f x_0$, $g x_1$, $f x_2$, $g x_3$, $-----, f x_{2n}$, $g x_{2n+1}$ converges to $z \in X$ as $n \to \infty$ -----(g'). Then P, Q, f and g have a unique common fixed point z in X

Proof:

From the condition (3) $f x_0$, $g x_1$, $f x_2$, $g x_3$, $-----, f x_{2n}$, $g x_{2n+1}$ converges to $z \in X$ as $n \to \infty$ Since $f(x) \subset Q(x)$ then there exists $u \in X$ such that z = QU we prove that Q u = g u = z. we consider

$$\begin{split} S(gu, gu, z) &= S(z, z, gu) = S(fx_{2n}, fx_{2n}, gu) \leq \lim_{n \to \infty} \frac{\alpha S(Qu, Qu, gu)[1 + S(Px2n, Px2n, fx2n)]}{1 + S(Px2n, Px2n, Qu)} \\ &+ \beta S(Px, Px, Qu) \\ &= \frac{\alpha S(z, z, gu)[1 + S(z, z, z)]}{1 + S(z, z, z)} + \beta S(z, z, z) \\ &= \alpha S(z, z, gu) \\ S(z, z, gu) \leq \alpha S(z, z, gu) \end{split}$$

 $(1-\alpha)S(z, z, gu) \le 0$ which implies that z = g u

Therefore Q u = g u = z

Since (Q ,g) is weakly compatible Qg u = gQu

Which implies Qz = gz

and $g(x) \subset P(x)$ there exists $v \in X$ such that z = P v

we solve fv = Pv

Consider $S(fv, fv, gx_{2n+1}) \le \frac{\alpha S(Qx_{2n+1}, Qx_{2n+1})[1+S(Pv, Pv, fv)]}{1+S(Pv, Pv, Qx_{2n+1})} + \beta S(Pv, Pv, Qx_{2n+1})$

 $S(fv, fv, z) \leq 0$

Which implies that fv = z

Since fv = Pv = z and (f, P) is weakly compatible fPv = Pfv which implies that fz = Pz.

Now consider $S(fz, fz, z) = \lim_{n \to \infty} S(fz, fz, gu)$

$$\leq \lim_{n \to \infty} \frac{\alpha S(Qu,Qu,gu)[1+S(Pz,Pz,fz)]}{1+S(Pz,Pz,Qu)} + \beta S(Pz,Pz,Qu)$$
$$= \beta S(fz,fz,z)$$

Since $\alpha + \beta < 1$

S(fz, fz, z) = 0

Which implies that fz = z

Which implies that fz = Pz

Therefore z is common fixed point of f and P

Again we consider

$$S(z, z, gz) = S(fz, fz, gz) \le \frac{\alpha S(Qz, Qz, gz)(1 + S(Pz, Pz, fz))}{1 + S(Pz, Pz, Qz)} + \beta S(Pz, Pz, Qz)$$
$$= \beta S(z, z, gz)$$

Which implies $S(z, z, gz) \le \beta S(z, z, gz)$ Since $\beta \ge 0$, $\alpha + \beta < 1$ S(z, z, gz) = 0Thus gz = zTherefore $z = Q \ z = g \ z$ then z is a common fixed point of g and Q This gives $S(fz, fz, z) \le \beta S(fz, fz, z)$ Since $\beta \ge 0$, $\alpha + \beta < 1$ S(fz, fz, z) = 0Thus fz = zTherefore $f \ z = Pz = z = Q \ u$

Yhis shows that z is a common fixed point of P and f

Therefore Pz = Qz = fz = gz = z showing that z is a common fixed point of P,Q, f and g.

Remark: Theorem (B) is a generalization of Theorem(A) by virtue of the weaker conditions such as weakly compatibility of the pairs (f, P) and (g, Q) in place of compatibility; and associated sequence relative to four self maps P, Q, f and g in place of the complete metric space.

Acknowledgement

The author would like to thank the University Grants Commission, Govt. of India, New Delhi for sanctioning the minor research project.F.No:4-4/2014-15 (MRP-SEM/UGC-SERO), under which the present research is carried out.

REFERENCES

- 1. Jungck, G. 1986. Compatible mappings and common fixed points, Internat. J.Math. & Math.Sci. 9, 771-778.
- 2. Pant, R.P. 1999. A Common fixed point theorem under a new condition, Indian J. of Pure and App. Math., 30(2), 147-152,
- 3. Jungck, G. 1988. Compatible mappings and common fixed ints(2), nternat. J. Math. & Math. Sci. 11, 285-288.
- 4. Jungck, G. and Rhoades, B.E. 1998. Fixed point for set valued functions without continuity, *Indian J. Pure.Appl.Math.*, 29 (3), 227-238.
- 5. Sessa, S. 1980. On weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46), 149-153
- Lohani, P.C. and Badshah, V.H. 1998. Compatible mappings and common fixed point for four mappings, *Bull.Cal.Math.Soc.*, 90,301-308.
- 7. Fisher, B. 1983. Common fixed points of four mappings, Bull.Inst.Math. Acad.Sinica, 11, 103.
- 8. Srinivas, V. and Umamaheshwar Rao, R. 2008. A fixed point theorem for four self maps under weakly compatible maps, Proceeding of world congress on engineering, vol.II, WCE, London,U.K.
- Umamaheshwar Rao. R and Srinivas, V. 2007. A generalization of Djoudi's common fixed point theorem, *InternationalJ. of* Math. Sci. & Engg. Appls., Vol.1, (No.2), 229-238.
- Umamaheshwar Rao, R., Srinivasand, V., Srinkanth Rao, P. 2007. A fixed point theorem on reciprocally continuous self maps" *Indian Journal of Mathematics and Mathematical Sciences*, Vol.3, No.2, 207-215.
- 11. Afra, J.M. 2014. Fixed point type theorem in S-metric space, Middle-East J. Scientific Research 22(6), 864-869.
- 12. Chouhan, P. and Neeraj Malviya, A Common unique fixed point theorem for expansive type mappings in S-metric spaces, *International Math.Forum*, vol.8, No.26,1287-1293.
- 13. Dhage, B.C. 1992. Generalized metric spaces mappings with fixed point, Bull.Calcutta Math.Soc. 84, 329-336.
- 14. Dien, N.H. 1994. Some remarks on Common fixed point theorems, J. Math. Anal. Appl. 187, No.1, 76-90.
- 15. Gahler, S. 1963. 2-Metrische undihre topoloische struktr, Math.Nachr.26, 115-148.
- 16. Jungck, G. 1976. Commuting mappings and fixed points, Amer. Math. Monthly 83, No.4, 261-263.
- 17 Kada, O., T. Suzuki and W. Takahashi, 1996. Non Convex minimization theorems and fixed point theorems in complete metric spaces, *Math.Japon.* 44, No.2, 381-391.
- 18. Mustafa, Z. and Sims, B. 2006. A new approach to generalized metric spaces, J.Nonlinear Convex Anal.7, 289-297.
- 19. Nabil, M. Mlaiki, $\alpha \psi$ 2015. Contractive mapping on S-metric space, Math.Sci,Letters, 4 No.1, 9-12.
- 20. Naidu, S.V.R., K.P.R. Rao and N. Srinivas Rao, 2004. On the topology of D-metric spaces and the generation of D –metric spaces from metric spaces, *Intl.J.Math.Math.Sci.* No.51, 2719-2740.

- 21. Naidu, S.V.R., Rao, K.P.R. and Srinivas Rao, N. 2005. On the concept of balls in D-metric space, *Intl. J.Math.Math.Sci*, 133-141.
- 22. Naidu, S.V.R, Rao, K.P.R. and Srinivas Rao, N. 2005. On convergent sequences and fixed point theorems in D-metric spaces, *Intl.J.Math.Math.Sci.*, 1969-1988.
- 23. Sedghi, S., Shobe, N. and Zhou, H. 2007. A Common fixed point theorem in D*-metric spaces, *Fixed point theory Appl*.Vol. Article ID 27908, 13pages.
- 24. Sedghi, S. Shobe, N. and Aliouche, A. 2012. A generalization of fixed point theorems in S-metric spaces, *Mat.Vesnik* 64.3, 258-266.
- 25. Sedghi, S., N.V.Dung, 2004. Fixed point theorems on S-metric spaces, Mat. Vesnik 66,1, 113-124.
- 26. Ume, J.S., and S.Yi, 2002. Common fixed point theorems for a weak distance in complete metric spaces, *Intl.J.Math & Math.Sci.*30 (10), 605-611.
