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INTRODUCTION 
 

In [Mallios, 1998; Mallios, 2006] and [Papatriantafillou, 1999] the authors presented sheaves over topological space X which 
represent a background in this research paper. Sheaves over a topological space X play an important role in Absract mathematics 
and in some physical applications where we consider the differentiability and integrability as quiet restrictive properties (if not 
non-natural) and the quest for some algebraic methods seems to be the most desirable. In  applied mathematics, the Fourier 
Transform (FT) has developed into an important tool. It plays a powerful role in solving partial differential equations. The Fourier 
Transform (FT) avails also a technique in treating signal analysis where the signal from the original domain is transformed to the 
spectral or frequency domain. The Fourier transform has contribution in the analysis of Lorenz-Lorentz gauge invariance when 
considering the function as the pertinent generic source function where sources are well-behaved enough in time. All facts in min, 
we extend the Fourier Transform (FT) in geometric algebra. The Clifford Fourier transform (CFT) was introduced by B. 
[Jancewicz ,1990], the author proved that CFT plays an important role for electromagnetic field computations in the realm of 
Clifford’s geometric algebra of  ℝ�  where the imaginary complex unit replaces the central unit pseudoscalar of the Clifford 
algebra. In [Hitzer, 2008], the author expanded the Fourier Transform to multivector valued function distribution in  ���,�   with 
compact support. [M. Felsberg ,2002] and [Ebling.J, 2005] adapted the same method in Clifford’s geometric algebra of  ℝ�  with 
usual applications in image structure computations and [G.Scheuermann, 2005] suggested Clifford Fourier Transform (CFT) in the 
study of vector fields in  ℝ� and  ℝ�  dimensional physical flows. In [De Bie, 2011], the author presented how Fourier Transforms 
(FTs) in a given space can be generalized to Clifford algebras of that space with the help of an operator form for the complex 
Fourier Transforms. In the present research paper, we recall the same notions but through sheaf theory so that we come up with a 

local and global concepts of Clifford Fourier Transforms (CFTs) limiting ourselves in Lebesgue space  ���	ℝ�
�,(ℝ�

�,��)� . 

 
1. Preliminaries 
 
Considering   X as a fixed topological space (see [Schapira, 1971]). The sheaf of sets over the topological space X is the triplet 
(�,�,�)  such that  �:� → �  is a surjective (local) homeomorphism (see [Mallios, 1998], [Mallios, 1998] & [Vassiliou, 2005]).  
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For any x ∈ X, we have  ���(�)= �� .   In this case,  �� is a fiber of S over x or a stalk of S at x.  
 
We set 

                                            � = ⋃ �� = ∑ ���∈��∈�                                                       (1.1)      
         

If �� is a Group (Ring, vector space, module, algebra…), then the triplet (�,�,�)  is a sheaf of Groups (Rings, vector spaces, 
modules, algebras…) over X. The triplet �� =  (�, s, X) is a sheaf of � − modules if the following conditions are satisfied 
 

(i)  S is a sheaf of abelian groups, 
(ii)         The stalk at � ∈ ���  ��:= 	�

��({�}) is a left � � − module, 
(iii)        The exterior multiplication ∙∶	� ×× � → �,  (�,�)→ � ∙� ∈ �� ⊆ �, 

                             with   �(�)= �(�)= � ∈ �, is continuous. 
 
We denote a sheaf of sets over X   by  
 

S� ≡ (�,�,�)                                                                    (1.2) 
 

 Let � � ≡ (� ,�,�)  be the sheaf of � �-algebras (or simply, the � �-algebra sheaf), which is preferably unital and commutative, 
with ℂ� the sheaf of complex numbers over X. We denote by  � �

�  and   � �
�  	the sub sheaves of � � formed by positive elements 

and negative elements, respectively. In this case, we have 
 

                                                     � �
� ∩ � �

� = {0}�      and  	� �
� ∪ � �

� = � �                                   (1.3) 
 

The sheaf  S� ≡ (�,�,�) is called vector sheaf (or free module) of rank n iff, for any open x ∈ X, we have the following relation 
 

                  �� ≅ � �
� ≡ (� �)� ≅ �|� 	≅	⊕

� (� |�)≔ 	(� |�)
�                              (1.4) 

 
where � � is the sheaf of  � �-algebras , with  � � = (ℝ�	��	ℂ�) and � �  is a sheaf of unital	� -algebras over X, in other words  
(� |�)

�   denotes the �-terms direct sum of the sheaf of ℂ-algebras �  restricted to �, for some � ∈ ℕ . Here  (� |�)
�  is the local 

sectional frame or equivalently local gauge of states of � associated via the open covering � = {��} of �. For � = 1, the 
corresponding vector sheaf is termed as a line sheaf of states, that is locally for any point � ∈ � there exists an open set � of � 
such that  �(�)≡ 			�|� 	≅ � |�. 
 
We observe that  ℝ� ≡ (ℝ,� ,�)  and  ℂ� ≡ (ℂ,�,�)  are respectively the sheaf of real and complex numbers. In this regards, for 
any  � ∈ � 	open in X, we have     
 

�� = ���
�є��⃖�������
�� ≡ ���

�є��⃖������
��                                                              (1.5) 

 

where  lim
�є��⃖������

 represents the inductive limit. 

 

Letting  ��� �	 be the category of sheaves of unital � -algebras over X and ������	(��	�� ��) the category of (differential) vector 
sheaves (or the category of sheaves of (differential) free � �-modules) over X  (see [Herich, 1973] & [Kashiwara, 2006]). Consider 
the following functor   
                                                             

  ��
����
:���� 	→ 			���� �                                                             (1.6)  

 

such that, for any � � ∈ 	����  ,  there exists 	Ω� ∈ 	���� � satisfying 
                                                                         

     ��
����(� �)= Ω�                                                                    (1.7) 

 

so that, for any  � ∈ �  open in X, the Leibniz (product) rule 
         

                                           																																				��
����
⃒� �		(�.�)= �.��

����
⃒� �(�)+ �.��

����
⃒� �(�)                                       (1.8) 

 

is satisfied , for any (local) sections  �,� ∈ � �  and ��
����
⃒� �:� � → Ω� is continuous and 	� �-linear. In the previous 

expression, we have identified a sheaf with the sheaf of germs of its sections 
 

The symbol “ │ ” designs the restriction of the functor to the object and  ��
����

 represents the differential	functor and 	��
����
⃒� �  

is the differential morphism, all over  X . 
 

For simplicity, we express the differential morphism over X as 
                                          

 ��
����
⃒� � = 		��                                                                       (1.9)  
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and define the triplet 
         
                                                                                         (� �,��,Ω�)∈ ���	×�	�

� 	×� 	����                                               (1.10) 
 
as the differential triad over a ℂ- algebraized space  (� ,�) (see [M. H. Papatriantafillou, 2000]). 
 
In this regards, one writes       
 
                                                                                                   ��� = (� �,��,Ω�)                                                                   (1.11) 
  
The following functor  
 

                                                                                              ��
���:���� � → ����                                                            (1.12) 

 
is such that, for any 	Ω� ∈ 	���� �   ,  there exists � � ∈ 	���� satisfying 
 

                                                                                                ��
���(��)= � �                                                                       (1.13) 

 

and for any � ∈ � 	open in X and any differential form �  in  Ω�  , we have 
 

                                                                                                                              ��
���⃒Ω�

(�)= � + �������� ∈ � � ⊂ � �                                                       (1.14) 
 

with  � ∈ � �   and Constant  ∈  � �.  Consequently, one writes              
 

��
���⃒Ω�

(�)= ∫
Ω�
����                                                          (1.15) 

    

where � is a measure defined in Ω�  and  ∫
Ω�
:	�� → � �   is continuous  and satisfies the following relation, for any x ∈ U, with U 

open in X  

                                                                                                               ∫
Ω�
= ��

�� ≡ (��)
��	                                                                       (1.16) 

and the triplet  

                                                      ���,∫��
,� �� ∈ ���� ×� �

���	×� ���	                                            (1.17) 
 

is defined as the integral triad over a ℂ- algebraized space (� ,�) denoted as 
 

                                                                                                            ����� = ���,∫��
,� ��                                                                      (1.18) 

 

Moreover, for any  � ∈ �  open in X, we have      
                                                                                                           ��� = 	���

�є��⃖�������
��� 	= 		���

�є��⃖�������
���                                                                 (1.19) 

 

and                          																																																																													����� = 	���
�є��⃖�������
����� 		= 			���

�є��⃖�������
����� 	                                                (1.20) 

 

where  ���
�є��⃖������

 represents the inductive limit. 

Through quadratic differential triad spaces, we construct the Clifford differential triad algebras. From the Clifford differential triad 

morphisms , we realize the category of Clifford differential triad algebras and other important functions. Letting  ���,��� �   be a 

quadratic space, the Clifford algebra of ���,��� �  or simply, of E, is regarded as a pair (��	,��) formed by an � �–algebra ��	 and 

an � � − linear map ��:�� → ��  such that , for any open U ⊆  X , we have  
 

                                                                          ��(�)
� = 	���(�)	.1��                                       (1.21) 

 

with  � ∈ �� ≡ �(�)    and  ��� ∶	�� → � � , where 1��  designs the unity in ��. In presheaves notation, we have 
 

                                           ��
� o  �� =   ��	o 	��

� ,  ��
� o  ���  =   ���	o 	��

�
 

 

                  with V ⊆   U ⊆  X, open, 
 

For any � �-algebra and all � �–linear map ��:	�� 	→ 	��  and any open U ⊆  X , we have 
 

                                   ��(�)²  = ���(s) . 1��                          (1.22) 
 

where  � ∈ ��. Also, there exists a unique morphism of � �–algebras   ��		:�� → �� such that the following diagram commutes 
                                                                                                              �� 
                                                                             ��															      →                �� 
 
                                                                                           �� ↓               �� 
    
 
                                                                                            ��   
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In other words, one obtains 
                          

                                                 	��
� o  �� =   ��	o 	��

� ,  ��
� o  ��� =   ���	o 	��

�
, 

                       with V ⊆   U ⊆  X, open. 
We denote the Clifford � �–algebra (��,��)  by 

                                                                   ��		≡ 	��(E�		,��� ) ≡  (��(E�	,��� ) , ��).                                             (1.23) 

 

2. Fourier transform in �� �	ℝ�
�,(ℝ�

�,� �)� 

 

Let �  be a fixed topological space and  �� ≡ 	(�,�,�)  be a sheaf (of sets) over  � ; i.e., � ∶� → � is a (local) homeomorphism. 
We say that ��  is a sheaf of groups (see [Mallios, 2006], [Mallios, 2002] & [Vassiliou, 2005]) (or shortly a group sheaf) over  �  
if, for any �	∈ �  , the fiber 
 

�� = 	�
��({�})	≡ 	���(�)	⊆ �                                                                                 (2.1) 

is a classical group. 
 

Consider a subsheaf  �∇�   of  �	× �   defined by 
 

�	∇� = 	{	(�,�′)∈ � × �:	�(�)= 	�(�′)	� ∈ �}                                                          (2.2) 
 
We say that  �� ≡ 	(�,�,�)  is a topological group sheaf if it is a group sheaf over  �  and the map 
 

�∇�		
�
→ 		�                                                                                         (2.3) 

 

is continuous and for any  � ∈ �  open in  �  , we have the following inductive limit 
 

�� = 	lim
�∈��⃐��������
�� 

 

Let  � � = 	(ℝ�	��	ℂ�)≡ (� ,∎ ,�)  be a sheaf of fields (or shortly a field sheaf) over  � . We say that  �� ≡ 	(�,�,�)  is a sheaf 
of   � �–vector spaces (or shortly a  � �–vector space sheaf) over  �  if, for any  � ∈ �  , the fiber 
 

�� = 	�
��({�})	≡ 	���(�)                                                                              (2.4) 

 

is a classical vector space. 
Consider the following subsheaves  �∇�  of  � × �  and  � ∇�  of  � × �  defined by: 
 

�∇� = 	{(�,�′)∈ � × �:	�(�)= 	�(�′)= � ∈ �}                                                        (2.5) 
 

and 
 

� ∇� = 	{(�,�)∈ � × �:	∎ (�)= 	�(�)= � ∈ �}                                                      (2.6) 
 

We observe that  �� ≡ 	(�,�,�)    is a topological � �– vector space sheaf over  � , if  ��  is a classical topological � �–vector 
space and the maps 

�∇�	
�
→ 		�  and   � ∇�	

∗
→ 		�                                                                       (2.7) 

 

are continuous.  Let  ��  and  ��  be respectively a topological group sheaf and a topological vector sheaf. Letting  ��(�)  be a 
linear group sheaf of  � and we consider two continuous linear morphism 
 

�	
�
→ 		��(�)  ,    �∇�	→ 		�                                                                     (2.8) 

 

given respectively, for any  � ∈ �  , by 
 

�� 	→ 		�(��)= 	�(��)  ,   (�,�)� ≡ 	(��,��)	→ 	�(��)	(��)                                     (2.9) 
 

with  �� ∈ �� ⊆ �   , and  �� ∈ �� ⊆ � , then the pair 
 

(�,�)� ≡ 	(��,��)                                                                                  (2.10) 
 

is a continuous linear representation from  �   to  �. We notice that if  �� = 	(�,< ⋯ 	>)� ≡ 	(��,< ⋯ 	> �)  is an Hilbert space 
sheaf over   � ; i.e., the sheaf morphism norm  ‖			‖�:		�� 	→ 		ℝ�

�  is complete (in other words, all Cauchy sequences in ��  
converge) and the following scalar product  < ⋯ > � :		�� 	→ 		ℝ�

�    is such that, for any  � ∈ �  , we have 
 

‖��‖�
� = 	< ��,�� > �                                                                                (2.11) 

   
                                                                                                               �� ∈ �� ⊆ �    
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and  ��  is finite-dimensional, then the representation  (�,�)� = 	(��,��)  is said to be finite, and the dimension of  ��   is called 
the degree of the representation. Letting by  � �   a subsheaf of  �� then, it is said to be invariant by  ��  if, for any  � ∈ � and 
�� ∈ �� ⊆ � , 
 

�(��)(� �)	≡ 	��(��)(� �)	⊂ 	� � ⊆ �                                                             (2.12) 
 

The representation  (��,��)  is regarded as irreducible if  � �  and  {0�}  are only the subsheaves of  ��  that are invariant by  �� . 
Assuming that  (���,���)  and  (���,���)  are two linear representations of the same group sheaf  �� . They are equivalent if 
there exists a  � �-isomorphism ��:		��� 	→ 		��� such that, for any  � ∈ � and  �� ∈ �� ⊆ �  , 
 

���	���(��)= 	���(��)	�	��                                                                                (2.13) 
 

 In this regard,  ��  is a ℂ�–vector space sheaf equipped with a Hermitian form 
 

<		,> �	∶		��∇�� 		→ 		��                                                                                  (2.14) 
 

i.e., a ℂ�–bilinear form considered as follows. The representation  (��,��)  is said to be unitary with respect to <		,> �  if, for any   
� ∈ � , 
 

< 	�(��)(��)	,�(��)(�′�)> �=	< 	��		,�′� > �                                                         (2.15) 
with any  ��  ,  �′� ∈ �� ⊆ ��  and  �� ∈ �� ⊆ �  . We now restrict ourselves to locally compact unimodular group sheaves, i.e, we 
consider a measure that is invariant with respect to both left and right translations, called a Haar measure. By letting  ��  be a 
locally compact unimodular group sheaf and denoting  ��:	�(��)	→ 	ℝ�

�  a Haar measure, then, for any �� ∈ �
�(��,ℂ�)  and  

ℎ ∈ ��  , we have (see [B. Jancewicz, 1990]) 
 

∫
��
��(��)	���(��)= 		∫��

��(��ℎ�)	���(��)= 	∫��
��(ℎ���)	���(��)                                     (2.16) 

 

For any  � ∈ � and  ��,ℎ� ∈ �� ⊆ �� . 
 

We see that locally compact abelian group sheaves and compact group sheaves are unimodular sheaves. Let  �� ∈ �
�(��,ℂ�), 

where ��	is a locally compact unimodular sheaf over � and  �� be the Haar measure. The Fourier transform of  ��  as is thus the 

map  ���  given, for any  � ∈ � , by    
 

    ���(��)= 	∫��
��(��)��(��

��)	���(��)                                                              (2.17) 
 

Then, we say that  ��� ∈ �
�����,ℂ���    and ���(��)  is a Hilbert-Schmidt operator over the space sheaf of the representation  �� . 

Theorem 2.1. Let  �� ∈ �
�(��,ℂ�) , where  ��  is a locally compact unimodular sheaf over  �  and  ��� ∈ �

�����,ℂ��� . There is a 

measure over  ���  denoted by  ���  such that  �� 	→ 	���  is an isometry. The following inverse formula holds 
 

��(��)= 	∫���
���������(��)��(��)�����(��)                                                    (2.18) 

 

where  ��  is the Fourier inverse transform of  ��� .  Let  ��  be a real or complex sheaf valued function defined on  �� = 	ℝ�
� 	≡

	(ℝ�)
� . Then, its Fourier transform is given, for any  � ∈ �, by 

 

���(��,�′�)= 	∫ℝ�
� ���(��,��)�

��(������′���)������                                                 (2.19) 
 

Also, if we identify  ℂ�  with  (ℝ�
�,‖		‖��) , then we have a special group sheaf  ��(2)�  , called the 2–special orthogonal group 

sheaf over   �	, such that the action of  ��(2)�  on ℂ� (given by the complex multiplication) corresponds to the action of  ��
�  on  

(ℝ�
�,‖		‖��). Assuming that  �� is a group sheaf. We say that  �� is a Lie group sheaf over  � if, the group morphism sheaves  

�∇�	
�
→ 		�   and  �	

�
→ 		�   , given, for any  � ∈ � , respectively by 

 

�����,�′
�
� = 	���′

�
  and  ��(��)= 	��

��                                                         (2.20) 
 

are derivable. Assuming that  �� is a Lie group sheaf over  � , then  ���  is the Pontryagin dual sheaf of  �� if it is the sheaf of 
equivalence classes of unitary irreducible representations of  �� . From the above concept, one says that the Pontryagin dual of  
ℝ�
�   is  ℝ�

�   ; i.e., ℝ��
� = 	ℝ�

�  . The Pontryagin dual of  ��(2)� is  ℤ� . By letting  �� to be a Lie group sheaf over  �  and ��
�  a 1–

spherical sheaf over �. The character of  ��  is a continuous group morphism from ��  to  ��
�   . If  �� = ��(2)�  , then the 

characters of  �� are the group morphisms from  ��(2)� to  ��
�  such that, for any  � ∈ � open in �  , we have   �� ∈ ��(2)� 	→

	����� ∈ 	��
�,    � ∈ ℤ. 

 

If  �� = 	ℝ�
� , then the characters of  ��  are the group morphisms from  ℝ�

�   to ��
� given, for any  � ∈ �  open in  � , by  

 

(���,… ,��� )∈ ℝ�
� 	→ 		��(������	…�	�� ��� ) ∈ ��

� 
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with   ��,… ,��  are real numbers. 
 

For  ��:	�� 	→ 	� �  considered as a � –quadratic form on  ��  defined for any  � ∈ �  open in  �  as follows 
 

�� → �(��)≡ 	��(��),   �� ∈ �� ⊆ 	�� 
���� → �(����)≡ 	��(����)= 	��

�	��(��),  �� ∈ � � ⊆ � �, �� ∈ �� ⊆ 	�� 
(��,�′�)→ �(��,�′�)≡ 	��(��,�′�)= ��(�� − �′�)− ��(��)− ��(	�′�) 

��,�′� ∈ �� ⊆ ��, where  ��  is bilinear. 
 

Then the symmetric � �–bilinear form  �� is regarded as a polar � �–bilinear form, with 
 

�� = 	∑ ���∈�                                                                                     (2.21) 
 

We notice that for any  �� ∈ �� ⊆ ��  , one writes 
 

��(��)= 	��(��,��)                                                                            (2.22) 
 

For  ��(��)= 	0� , we have a  � �–quadric. Referring to the above consideration, a slightly more general concept is to concentrate 
in the first place on inner product. Let given the symmetric � �–bilinear inner product  < |	> �� ∶	��	∇�� 	→ 	� �  , defined, for any  
� ∈ � , by 
 

< |	> ��(��,�′�)= 	< ��|	�′� > �� = 	< �′�|	�� > �� ∈ � � ⊆ � �                                           (2.23) 
 

We observe that there is need to introduce dual space sheaves for polar elements, i.e., hyperplanes. For this reason, we have to 
assume that the characteristic of  � �  is not equal to  2 . The major concern is to find out about the kind of algebra sheaves which 
arise from adding this particular structure to and algebra sheaf having a product	� . Such structure 
 

(��,��,��)                                                                                  (2.24) 
 

would , e.g., be an operator algebra sheaf where we have employed a non-canonical quantization. However, it is more suitable to 
find out if the quadratic form can imply a product on ��  . In this case, the product map  ��  is a consequence of the quadratic 
form   ��  itself, since Clifford algebra sheaves enjoy the goodness of this type of quadratic form. 
 

3. Main result: Clifford Fourier transform in �� �	ℝ�
�,(ℝ�

�,� �)� 
 

From its natural construction, based on quadratic form having a symmetric polar bilinear form ���   , it is clear that we can expect 

Clifford algebra sheaves to be related to orthogonal group sheaves. Clifford algebra sheaves should be interpreted as a 
linearization of a quadratic form. It was introduced for the first time by Dirac who used this approach to postulate his famous 
equation. Furthermore, we can learn from the polarization process that this type of algebra is related to anti-commutative relations 

��(��)= 	∑ �
����������� 	,  2��� = �

��′������ + ������                                                     (3.1) 
 

for any  � ∈ �  open in  �	, which leads necessarily to 
 

����� + ������ = 		2����,�                                                                           (3.2) 
 

Anticommutative algebra sheaves are referred to as (canonical) anticommutation algebra sheaves. 
 

Let �� be a   � �-vector space sheaf over  � . The   � �–bilinear form  < |	>�� ∶	��	∇�� 	→ 	� �  is antisymmetric if, for any  � ∈ �  
open in  � , we have 
 

< ��|	�′� > �� = 	−< �′�|	�� > �� 
 

A � �–linear space sheaf equipped with an antisymmetric � �–bilinear inner product is regarded as Weyl space sheaf. The 
antisymmetric implies directly that all vectors are null or synonymously isotrop 
 

< ��|	�� > �� = 0� ,  � ∈ �  open in  �                                                                     (3.3) 
 

It is possible to define a � �–algebra as follows 
 

(��,��,< |	>��)	≡ 	(�,�,< |	> �)�                                                                     (3.4) 
 

Moreover, we are interested in such products which are derived from � �–bilinear form. From polarization technique, we find a 
(canonical) commutator relation � �–algebra sheaf 
 

                                                                                     ����� − ������ = 2���,�                                                                              (3.5) 
 

Considering the action of group morphism sheaves from  ℝ�
�   to  ��(2)�  on  (ℝ�

�,‖		‖��), for any  � ∈ �  open in  �  and  

� ∈ �� �	ℝ�
�,(ℝ�

�,‖		‖��)�   , we define the Fourier transform   �  as in (2.19).  
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Consider the Clifford algebra sheaf configuration. Let us embed  (ℝ�
�,‖		‖��)≡ (ℝ

�,‖	‖�)�  into  ℝ�,�� ≡ �ℝ�,���  so that  ��  

can be regarded as  �ℝ�,�
� �

�
–valued function 

 

�����,�′
�
� = ������,�′

�
���� + ������,�′

�
����                                                    (3.6) 

 

for any  � ∈ �  open in  � , where 
 

���
� = ���

� = 1� ≡ 1  and  ������ + ������ = 0� ≡ 0                                             (3.7) 
 

With above conditions, (2.19) becomes 

���(��,�′�)=

∫
ℝ�
� ������

��������′�

�
�� 1� + ��� ��

��������′�

�
�� �������(���(��,�′�)��� + ���(��,�′�)���)�����− �

��������′�

�
�� 1� +

																																																																			��� �− �
��������′�

�
�� �������������                                                                              (3.8) 

Let  �� be a non-degeneracy � �–quadratic form and  ��  the associated � �-bilinear form defined on  ��  (see [Ebling, 2005], 
[Ebling, 2003] & [H. De Bie & Y. Xu, 2011]). Denote by  �(��,��)≡ �(��)  is the Clifford � �–algebra sheaf on  �� . We say 
that a sheaf  ��  is a Clifford group sheaf if, for any  � ∈ �  open in � and  �� ∈ �(��)≡ �(��)  , we have (see [E. Hitzer, B. 
Mawardi, 2008] & [G. Sommer, 2001]) 
 

�� = ��� ∈ �(��):���(��)= ������
�� ∈ ���                                                                   (3.9) 

 

where  �� ∈ ��  and  ��� ∈ ���� �(��)  . 
 

We notice that  ��  is a multiplicative group sheaf over  �  of  �(��) . The � �–automorphism  ���:�� → ��  is a � �–isometry; 

i.e., an orthogonal transformation of  �(��) . In other words,  ���:�� → ��  is a � �–linear bijective transformation, if for any  

� ∈ � open in  � , we have 
 

� ����(��)� ≡ �� ����(��)� = ��(��)                                                             (3.10) 
 

For any  �� ∈ �� ⊆ ��  and  �� ∈ �� ⊆ ��  . Let  ��  be a Clifford group sheaf over  � . We define a group spin denoted  
����(�)� , as follows 
 

����(�)� = �∏ (��)�
��
��� ,(��)� ∈ ℝ�,��

� ,‖��‖� = 	1��                                              (3.11) 
 

Or equivalently 
 

����(�)� = 	��� ∈ ℝ�.��,�(��)= ��,	����
� = 1�,�����

�� ∈ ℝ�,��
� ,∀� ∈ ℝ�,��

� 		�    (3.12) 
 

It is well known that  ����(�)�   is a connected compact Lie group that universally covers  ��(�)�   (� ≫ 3) .  Let  ��� ,�′�
≡

���,�′�� be a sheaf morphism from  ℝ�
�   to  ����(2)�  . Then, we can write expression (219), for any  � ∈ �  open in  �  , in the 

following form (see [G. Sommer, 2001]) 
 

���(��,�′�)= ∫ℝ��
(���(��,�′�)��� + ���(��,�′�)���)	⊥� ��� ,�′�

(− ��,−��)������                        (3.13) 
 

Where  ��� ,�′�   sends  (��,��)  to  ���� ��
��������′�

�
��������  and  ⊥� denotes the action  �� ⊥� 	�� = ��

����� of  ����(2)�  on  

ℝ�,��
� ≡ �ℝ�,�

� �
�
. 

 

The group sheaf morphisms  ���,�′�� followed by the action on  �ℝ�,�
� �

�
  correspond to the action of group sheaf morphisms from  

ℝ�
�   to  ��(2)�  on  (ℝ�,‖	‖�)�  . The Fourier transform of a real valued function is then defined by embedding  ℝ�  to  ℝ�

�   .  Let  

�� ∈ �
��	ℝ�

�,(ℝ�
�,��)� , where ��:	ℝ�

� → ℝ�
�   is a positive definite quadratic form. Let us associate the Fourier transform of   ��  

with the action of the following group morphisms on the values of  �� , depending on the parity of  �. 
 
If  �  is even, then we consider the morphisms 
 

��:	ℝ�
� → ��(�)�                                                                                           (3.14) 

 

where  ��(�)� is the special orthogonal group sheaf over  � relative to the quadratic space sheaf  ℝ�
�  . 

If  �  is odd, then we embed  (ℝ�
�,��)  into (ℝ�

���,��⨁ 1�)  and we consider the morphism 
 

��:	ℝ
� → ��(��⨁ 1�)≡ ��(�⨁ 1)�                                                                   (3.15) 

 

The Fourier transform in this regard depends on the positive definite quadratic form  ℝ�
�

  (� denotes  �  if  �  is even and  � + 1  if  
�  is odd). For this reason,  ��(2)�  becomes  ��(�)�    and the group sheaf morphisms from  ℝ�

�   to  ��(�)� become group 
morphisms from  ℝ�

�     to  ��(�)� . For the case of ℝ�
�  –valued functions, the Fourier transform can be written in the Clifford 
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algebra sheaf configuration where we consider the action of  ����(�)  on �ℝ�,�
� �

�
 which corresponds to the action of  ��(�)� on  

ℝ�
�

  .Denoting by  ��  a group sheaf morphism from  ℝ�
�    to  ��(�)�  , then we define the Clifford-Fourier transform of  �� ∈

���	ℝ�
�,(ℝ�

�,��)� as follows 
 

                                                           ���(��)= ∫ℝ��
��(��,��)��(��,��)��(−��,−��)������ 

                                                                ���(��)= ∫ℝ��
	��(��,��)	⊥� ��(−��,−��)������                                                  (3.16) 

 

where we have 
 

 (if  �  is even):   ��(��,��)= ���(��,��)��� + ⋯ + ���(��,��)���                                                                             (3.17) 
 

 (if  �  is odd)  :   ��(��,��)= ���(��,��)��� + ⋯ + ���(��,��)��� + �����,�                                                          (3.18) 

with    ��,�
� = 1�  and   ��,���,� = − ��,���,� 

 

We observe that 
 

(1) ��:ℝ�
� → ����(3)� is such that, for any  � ∈ �, 

 

(��,��)→ �
�/�(���������)��                                                                                           (3.19) 

 

 Where �� ∈ ���,�
� �

�
  and  ��,�� ∈ ℝ� 

 

(2) ���:	ℝ�
� → ����(4)� is such that, for any  � ∈ �, are the sheaf morphisms that send  (��,��) to: 

 

��/�[��(�����)���(�����)][��������(�����)]	��/�[��(�����)���(�����)][��������(�����)]                                       (3.20) 
 

 With  ��,��,��,�� ∈ ℝ�  and  ��,�� ∈ ���,�
� �

�
. 

 

Let �� ∈ �
��	ℝ�

�,(ℝ�
�,��)�  , resp. �� ∈ �

��	ℝ�
�,(ℝ�

�,��)�  and denote by  ��  the embedding of  ��   into the Clifford algebra  

��(ℝ�
�,��⨁ 1�) ,  resp.  ��(ℝ�

�,��). For any � ∈ � open in �, the Clifford-Fourier Transform of  ��  is given by 
 

���(��,��,��,��,��)= ∫ℝ��
	��(��,��)⊥� ����,��,��,��,��(− ��,−��)������ 

 

���(��,��,��,��,��)= ∫ℝ��
��/�[��(�����)���(�����)��]��/�[��(�����)���(�����)����]	 

 

��(��,��)�
��/�[��(�����)���(�����)��]���/�[��(�����)���(�����)����]	������      (3.21) 

 

If we decompose �� as the sum (�∥)� + (��)� with respect to the plane generated by the bisector ��, we get for any � ∈ � open in 
�    
 

���(��,��,��,��,��)	= ∫ℝ��
(�∥)�(��,��)�

[���(�����)���(�����)��]������ 

                                            + ∫
ℝ�
�(��)�(��,��)�

[���(�����)���(�����)����]������        (3.22) 
 

The plane generated by   ����  represents the orthogonal of the plane generated by  ��  in ℝ�
� ⊆ ℝ�

�. Notice that the Clifford-
Fourier Transform of  ��  is left-invertible. Its inverse is the map  ���  given by 
 

���(��,��)= ∫ℝ��×���,�� ��
��(��,��,��,��,��)⊥� ��(��,��,��,��,��)(��,��)���������������                             (3.23) 

 

Where  ��   is a unit measure on  ���,�
� �

�
⊆ ���,�

� �
�

. 
 

Also, for any � ∈ � ⊆ � open in �, we have the following information 
 

���,�
� �

�                

��
�

��          ���,�
� �

�
 

���
�є��⃖�������

  ↓																																↓ ���
�є��⃖�������

 

���,�
� �

�                =          ���,�
� �

�
 

In other words, we have the following inductive limit 
 

���
�є��⃖�������
	≡ ���

�є��⃖������
		�		��

� 

 

Where  ��
�  represents the restriction map and  ���

�є��⃖�������
���	���

�є��⃖������
		� is called the inductive limit morphism. 
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4. Conclusion 
 
The Fourier transform plays an important role in some transformations in mathematics. We showed how sheaves over topological 
space can be illustrated in abstract mathematics. We have constructed the Clifford differential and integral triad algebras. We have 
then combined  the notion of Fourier transform and Clifford’s geometric algebra to determine the Clifford-Fourier Transform 
through sheaf theory in Lebesgue space sheaf. It is well known that the Fourier transform is successfully used to solving physical 
equations such as electrodynamics,  fundamental problems of heat and mass transfer and wave equations concepts. For future 
development, we can apply the Clifford-Fourier Transform for possible determination of Wigner-Weyl-Moyal formalisms in 
quantum mechanics in phase space configuration. 
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