

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 08, Issue, 10, pp.6106-6109, October, 2017

RESEARCH ARTICLE

ASSAY ON OSMOTIC FRAGILITY AND ANTIOXIDANT POTENTIAL OF THE METHANOLIC EXTRACT OF *CROTON HELIOTROPIIFOLIUS* KUNTH (EUPHORBIACEAE)

^{1,*}Jéssica de Andrade Gomes Silva, ¹Gibbelly Cavalcante da Silva, ¹CibelyTenorio de Oliveira, ¹Tainá Maria Santos da Silva, ¹Marcos Aurélio Santos da Costa, ¹Daniel Francisco Pereira Júnior, ¹Izabela Rangel Lima, ²José Adalberto da Silva Filho and ¹Sônia Pereira Leite

¹Departamento de Histologia e Embriologia, Centro de Biociências, Universidade Federal de Pernambuco, Brasil ²Deprtamento de Engenharia Ambiental, Universidade Federal Rural de Pernambuco, Brasil

ARTICLE INFO ABSTRACT The expressive use of medicinal plants promotes a growing need to understand the properties of vegetal Article History: compounds and their possible biologically active behaviors. Studies focusing on Croton heliotropiifolius Received 23rd July, 2017 have reported a predominant presence of alkaloids, polyphenols and reducing compounds. This species is Received in revised form reported as useful in relieving stomach pain and dysentery and as an antipyretic. This study aimed to 19th August, 2017 Accepted 02nd September, 2017 Published online 17th October, 2017 evaluate the hemolytic capacity of the methanolic extract of C. heiotropiifoliusbyin vitroosmotic fragility assay in erythrocytes, and determine the antioxidant potential of this extract using the 2,2-diphenyl-1picrylhydrazyl (DPPH)method. The osmotic fragility assay was performed at the concentrations 50, 100, Key words: 250, 500, 750 and 1,000 µg/mL of extract. For the in vitro photocolorimetry of free radical sequestration using DPPH, the concentrations used were 50, 100 and 200 μ g/mL. The methanolic extract of C. Croton heliotropiifolius, heliotropiifolius showed a low in vitro hemolytic activity under the test conditions. The highest Osmotic fragility, concentration (1,000 μ g/mL) showed a statistically significant difference (p<0.001) in relation to the other Antioxidant, concentrations, but reached a percentage of 2.95%, a low percentage to confirm hemolysis. Regarding 2,2-diphenyl-1-picrylhydrazyl (DPPH). antioxidant capacity, all the concentrations tested presented statistical differences at a level of significance of p<0.001. The improvement in the antioxidant activity index followed an increase in extract concentration. Thus, it is probable that there is no damage to the erythrocyte membrane and that the extract has compounds able to stabilize free radicals. Our study provides important data, contributing to a possible development of herbal medicines in addition to improving the scientific knowledge on Croton heliotropiifolius.

Copyright©2017, Jéssica de Andrade Gomes Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Many species of herbs are used as phytotherapics by the population (Bagatini *et al.*, 2007). Due to an expressive use of medicinal plants, there is a growing need to understand the properties of vegetal compounds and their possible biologically active behaviors (Del Ré *et al.*, 2012). Studies aiming to analyze the performance of compounds in cellular homeostasis evaluate the ability of substances to affect membranes, which may lead to cellular damage (Mohandas *et al.*, 2008). Cytotoxic analyses using hematological components, cells required for hemodynamic maintenance, have been demonstrating that several herbs are capable of causing osmotic disturbances and morphological changes in erythrocytes (Maiworm *et al.*, 2008). In contrast, the potential

**Corresponding author:* Jéssica de Andrade Gomes Silva, Departamento de Histologia e Embriologia, Centro de Biociências, Universidade Federal de Pernambuco, Brasil of some plant extracts to retard or inhibit the oxidation of molecules by suppressing chain oxidation reactions provides a protective effect which enables the use of such plants in complementary medicine (MahboubI et al, 2013). Chronic oxidative stress is responsible for many degenerative diseases, such as asthma, gastrointestinal diseases, heart disease, autoimmune diseases and Alzheimer's (Lushchak, 2014; Sies, 2015). Such antioxidant capacity is present in several natural constituents, such as α -tocopherol (vitamin E), β -carotene, ascorbate (vitamin C) and phenolic compounds (phenolic acids and flavonoids) (Sousa et al., 2007). The species Croton heliotropiifolius Kunth, popularly known as "velamen" due to its tiny hairs, is endemic to the Brazilian Northeast region and can be found frequently in the Caatinga, swamps, Restingas and the Cerrado (Randau, 2001). Studies focusing on Croton heliotropiifolius reported a predominant presence of alkaloids, polyphenols and reducing compounds. This species is reported as useful in relieving stomach pain and dysentery and as an antipyretic (Randau, 2001). Since few studies have been conducted to improve the understanding of the biological activities and the toxic behavior of *Croton heliotropiifolius* Kunth, this study aims to evaluate the cytotoxic capacity of the methanolic extract of this species through an *in vitro* osmotic fragility assay using erythrocytes. This test is capable of conducting a preliminary evaluation of plant toxicity besides determining the antioxidant potential of the extract using the free radical sequestration method (DPPH).

MATERIALS AND METHODS

Plant material

Leaves of *C. heliotropiifolius* were obtained in the urban area of the municipality of Garanhuns, Pernambuco (PE) state, Brazil. An exsiccate was prepared and deposited at the Andrade Lima Dárdano Herbarium of the Agronomic Research Institute (IPA) under the catalog number 90440, and identified by a botanist of that institution.

Obtaining the methanolic extract

The extract was obtained using the maceration method described by Filho, Yunes (1998).Leaves (100 g) were macerated for 10 days in methanol (1,000 mL) at room temperature and subjected to sporadic stirring. After this time, the mixture was filtered and the resulting filtrate was processed using a BUCHI Switzerland rotary evaporator at a temperature of 60°C until the total evaporation of the solvent.

Osmotic Fragility Assay

The osmotic fragility assay performed was based on the methodology described by Darcie and Lewis (1975). Commercial lamb blood samples (Laborclin[®]) were exposed to the extract for 60 minutes at room temperature and at different concentrations: 50 µg/mL, 100 µg/mL, 250 µg/mL, 500 µg/mL, 750 µg/mL and 1,000 µg/mL, diluted in isotonic sodium chloride solution (0.9%). Then, the solutions containing blood and extract were centrifuged (2,500 rpm/3 min) and the supernatant was analyzed using a Shimadzu UVvis 1800 spectrophotometer, resulting in a dose-response curve containing the percentage of estimated hemolysis using the absorbance values obtained. A negative control was established using an isotonic solution of sodium chloride (0.9%), and a positive control was established using distilled water. Both underwent the same procedures as test samples. The assay was performed in duplicate, and the hemolytic percentage was determined using the absorbance of the positive control, designated as 100%.

Antioxidant Activity

The antioxidant activity of the leaf extract of *C. heliotropiifolius* was determined using *in vitro* photocolorimetry, which was performed by sequestrating free radicals using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method (Mensor *et al.*, 2001). This analysis was based on the ability of the compounds to donate a proton to DPPH, thus stabilizing the free radical. To perform the assay, the samples were prepared by adding 1 mL of DPPH solution (60 μ M, Sigma, Germany) into 2.5 mL of extract solutions, which were diluted in ethanol at the concentrations 50, 100 and 200

 μ g/mL. After a reaction time of 30 min, the absorbances of the samples were read using the UV-Vis UV Spectrophotometer (Shimadzu UV-vis 1800) with a wavelength of 520 nm. As a negative control, the mixture of 1 mL of the DPPH solution and 2.5 mL of ethanol was used (Mensor *et al.*, 2001). All readings were performed in triplicate and, using the mean of the dataobtained, the difference in absorbance between the samples and the negative control was calculated. The percentages of antioxidant activities were determined by the equation:

Inhibition of DPPH activity (%) = $[(A-B) / A] \times 100$

where A = Absorbance of the DHPP solution of the control sample, B = Absorbance of the DHPP solution in the presence of the extract.

Statistical analyses

Hemolytic percentages and antioxidant activity data were analyzed by analysis of variance (ANOVA) followed by Tukey test. Results with a p<0.001 were considered significant. The software used was ASSISTAT version 7.7.

RESULTS AND DISCUSSION

Osmotic Fragility Assay

The osmotic fragility assay of *C. heliotropiifolius* extract, under the tested conditions, obtained low percentages of hemolysis (Figure 1), considering that the hemolytic action should be considered high when the percentages reach values higher than 40% and low when such values are lower than 10% (Nofiani *et al.*, 2011).

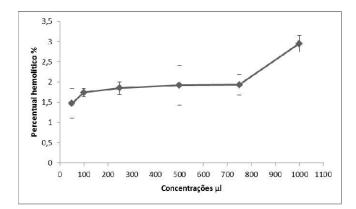


Figure 1. Dose-response curve showing hemolytic percentages of erythrocytes subjected to *C. heliotropiifolius* extract

The highest concentration tested, $1,000\mu g / mL$, showed a significant statistical difference (p<0.001) in relation to the other concentrations, but reached a percentage of 2.95%, which is a value low to confirm hemolysis. Thus, there is likely no damages to the erythrocyte membrane. The hemolytic action of the different plant compounds is attributed to a number of non-specific mechanisms, for example, surfactant compounds that produce a hemolytic effect by solubilizing the plasma membrane or osmotic lysis, which promotes changes in the permeability of red blood cells (Aparicio *et al.*, 2005). Saponins exert a hemolytic effect resulting from their ability to interact with the elements of the cell membrane of red blood cells, especially with cholesterol

molecules, causing a deformation in the membrane and, as a consequence, extravasation of the intracellular content (Dewick, 2002; Karabaliev *et al.*, 2003). This compound was absent in the phytochemical analyses of the species *C. heliotropiifolius* (Silva *et al.*, 2016).

Antioxidant Activity

Physiological processes such as respiration and metabolism result in the formation of free radicals (Tegeli et al., 2014). Although there are many antioxidant mechanisms in the body, occasionally such mechanisms are not sufficient to eliminate reactive species when there is an overproduction of reactive species, leading to an imbalance called oxidative stress (Cervellati et al., 2014, Kumar, 2011; Lushchak, 2014; Sies, 2015). Research has shown that the intakeof antioxidantsis very important to reduce the damage caused by reactive species (Rezaire et al., 2014). Natural products contain several compounds with an antioxidant activity (Almeida et al., 2011). This study evidenced that the methanolic extract of C. heliotropiifolius showed a DPPH clearance activity. All concentrations tested presented statistical differences at a level of significance of p<0.001. The improvement in the antioxidant activity index followed an increase in the extract concentration (Table 1), suggesting that the extract has compounds with the ability to stabilize free radicals.

Table 1. Results for the antioxidant activity of methanolic extracts of *C. heliotropiifolius* leaves using the DPPH radical

Methanolic extract of Croton	Antioxidant Activity
heliotropiifolius (µg/mL)	(%)
50	10.6 ± 0.33
100	13.8 ± 0.21
200	20.2 ± 0.7

Extracts with an antioxidant potential are generally rich in phenolic and polyphenolic compounds (Conforti et al., 2005). Such compounds derived from medicinal herbs have been isolated in several plant families (Boudet, 2007; Razavi et al., 2008). Flavonoids are metabolites mostly associated with antioxidant activity (Van Den Berg et al., 2000) since they have a carbon skeleton favorable for the stabilization of free radicals. Studies have been demonstrating the presence of this class of compounds in C. heliotropiifolius (Randau, 2001; Silva et al., 2016). Other species of the genus Crotonalsohave an antioxidant ability: C. celtidifolius (Nardi et al., 2003), C. nepetaefolius (Morais et al., 2006) and C.argyrophylloides (Catunda Jr et al., 2002). The antioxidant potential of C. heliotropiifolius was previously reported by Evangelica (2011), who reported higher values of antioxidant activity in the ethanolic extract when compared to our results. This can be attributed to the presence and the concentration of phenolic compounds found in the extract tested. Variations in the content of bioactive compounds are associated to factors such as solvent type, methodology used for the extraction process, plant physiology, climate, soil, luminosity, temperature, rainfall, nutrition, time and collection time (Gobbo-Neto; Lopes, 2007; Morais, 2009). Thus, it is possible to distinguish the intensity of the antioxidant action shown by plants. It is mainly determined by the number and the positions of hydroxyls of phytochemical compound molecules present in their composition (Melo et al., 2008). Our study provides important data, contributing to a possible development of herbal medicines in addition to improving the scientific knowledge on *Croton heliotropiifolius*.

Conflict of interests

The authors declare no conflicts of interest.

Acknowledgements

The authors would like to thank the Postgraduate Program in Morphotechnology (UFPE), the Centro Universitário Tabosa de Almeida (ASCES - UNITA), the Laboratory of Chemical Biophysics of UFPE and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support.

REFERENCES

- Almeida M M B, Sousa P H M, Arriaga A M C, Prado G M, Carvalho M C E, Maia G A, Lemos T L G. 2011. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. *Food Research International*, 44 (7), 2155-2159. http://doi.org/10.1016/j.foodres.2011. 03.051
- Angélico E C. 2011. Evaluation of Antibacterial and Antioxidant Activities of Crotonheliotropiifolius Kunteand Crotonblanchetianus Baill. Dissertation Master in Animal Science, Federal University of Campina Grande, Patos.
- Aparicio R M, García-Celma M J, Vinardell M P, Mitjans M 2005. In vitro studies of the hemolytic activity of microemulsions in human erythrocytes. *Journal of Pharmaceutical and Biomedical Analysis*, 39(5), 1063-1067. http://doi.org/10.1016/j.jpba.2005.06.013PMID:1605 4795
- Bagatini M D, Silva A C F D, Tedesco S B. 2007. The use ofAllium cepa test as a bioindicatorofgenotoxicityof medicinal plantsinfusions. *RevBrasFarmacogn*, 17(3), 444-7.http://doi: 10.1590/S0102-695X2007000300019
- Boudet A M 2007. Evolutionandcurrent status ofresearch in phenoliccompounds. *Phytochemistry*, 68(22), 2722-2735.http://doi.org/10.1016/j.phytochem.2007.06.012PMI D:17643453
- Catunda Junior F E A, Luciano J H S, Moraes S M 2002.. Antioxidant activity of essential oils from plants in Northeast Brazil. *Science and Technology*, 4, 23-29.
- Cervellati C, Romani A, Seripa D, Cremonini E, Bosi C, Magon S, Zuliani G (2014). Oxidativebalance, homocysteine, and uricacid levels in older patients with Late Onset alzheimer's Diseaseor Vascular Dementia. Journal of the Neurological Sciences, 337(1), 156-161. http://doi.org/10.1016/j.jns.2013.11.041PMID: 24321755
- Conforti F, Sosa S, Marrelli M, Menichini F, Statti G A, Uzunov D, Della Loggia R. 2008. In vivo anti-in flammatory and in vitro antioxidant activities of Mediterraneandietary plants. *Journal of ethno pharmacology*, 116(1), 144-151. http://doi.org/10.1016 /j.jep.2007.11.015PMID:18164564
- Dacie J V, Lewis S M 1975. PracticalHaematology (5th edit.) Churchill Livingstone. Edinburgh, London and New York.
- Del Ré P V, Jorge N 2012. Spices as natural antioxidants: applications in food and implication in health. *Brazilian Journal of Medicinal Plants*, 389-399. http://dx.doi.org/ 10.1590/S1516-05722012000200021

- Dewick, P. M. 2002. Medicinal natural products: a biosynthetic approach. John Wiley& Sons.
- Filho V C. and Yunes R A. 1998. Strategies for obtaining pharmacologically active compounds from edicinal plants. Química nova, v.21, n.1. http://dx.doi.org/10.1590/S0100-40421998000100015
- Gobbo-Neto L, Lopes N P 2007. Medicinal plants: factors influencing the content of secondary metabolites. Química nova, 30(2), 374.
- Karabaliev M, Kochev V. 2003. Interaction of solid supported thin lipid films with saponin. Sensors and Actuators B: Chemical, 88(1), 101-105. http://doi.org/10.1016/S0925-4005(02)00311-8
- Kumar S 2011. Free Radicals and Antioxidants: Human and Food System. *Adv. Appl. Sci. Res.*, 2(1):129.
- Lushchak VI 2014. Free radicals, reactive oxygenspecies, oxidative stress and its classification. Chem. Biol. Interact. 224:164-175. http://doi.org/10.1016/j.cbi.2014.10.016 PMID: 25452175
- Mahboubi M, Haghi G, Kazempour N, Hatemi A R. 2013. Total phenolic content, antioxidant and antimicrobial activities of Blepharisedulis extracts. *Songklanakarin J. Sci. Technol.*, 35(1), 11-16.
- Maiworm A I, Presta G A, Santos-Filho S D, Paoli S D, Giani T S, Fonseca A S, Bernardo-Filho M. 2008. Osmotic and morphological effects on red blood cell membrane: action of an aqueous extract of Lantanacamara. *Brazilian Journal* of *Pharmacognosy*; 18(1), 42-46.http://dx.doi.org/10.1590/ S0102-695X2008000100010
- Melo E A, Maciel M I S, Lima V A G L, Nascimento R J 2008. Antioxidant capacity of fruits. *Brazilian Journal of Pharmaceutical Sciences*, São Paulo, v. 44, n.2, p. 193-201.http://dx.doi.org/10.1590/S1516-93322008000200005
- Mensor LL, Menezes FS, Leitão GG, Reis AS, dos Santos TC, Coube CS, Leitão SG. 2001. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. *Phytother Res.*, 15: 127- 130. http:// doi.org/10.1002/ptr.687
- Mohandas N, Gallagher P G. 2008. Red cell membrane: past, present, and future. Blood, 112(10), 3939-3948. https:// doi.org/10.1182/blood-2008-07-161166PMID:18988878
- Morais L A S 2009. Influence of abiotic factors on the chemical composition of essentialoils. *Brazilian Horticulture*, v. 27, n. 2, p. 4050-4063.
- Morais S M D, Catunda Júnior F E A, Silva A R A D, Neto M, Stone J, Rondina D, Cardoso J H L. 2006. Antioxidant activity of essential oils from Northeastern Brazilian Crotonspecies. Química Nova, 29(5), 907-910. http://dx. doi.org/10.1590/S0100-40422006000500004

- Nardi G M, Felippi R, DalBó S, Siqueira-Junior J M, Arruda D C, Delle Monache F, Ribeiro-do-Valle R M. 2003. Antiinflammatory and antioxidant effects of Crotoncel tidifoliusbark. *Phytomedicine*, 10(2-3), 176-184. https:// doi.org/10.1078/094471103321659906PMID:12725573
- Nofiani R, Kurniadi R, Ardiningsih P. 2017. Antimicrobial, Antioxidant, Hemolytic Activities and Toxicity of Ethyl Acetate Extract Froman Unidentified Coral-Associated Fungus, Aspergillus brevipes RK06. *Indonesian Journal of Cancer Chemoprevention*, 2(2).
- Randau K P. 2001. Pharmacognostic study (pharmaco botanical and pharmacochemical) and biological activity of Crotonrhamnifolius H.B.K. And Crotonrhamnifolioides Paxand Haffm. (Euphorbiaceae). 143p. Dissertation Master in Pharmaceutical Sciences. Federal University of Pernambuco. Recife- PE.
- Razavi SM, Nazemiyeh H, Hajiboland R, Kumarasamy Y, Delazar A, Nahar L, Sarker SD 2008. Coumarins from the aerialparts of Prangosuloptera (Apiaceae). *Rev Bras Farmacogn.*, 18: 1-5.
- Rezaire A, Robinson J C, Bereau D, Verbaere A, Sommerer N, Khan M K, Fils-Lycaon B (2014). Amazonianpalm Oenocarpusbataua ("patawa"): Chemical and biological antioxidant activity–Phytochemical composition. *Food chemistry*, 149, 62-70. http://doi:10.1016/j.foodchem. 2013.10.077PMID:24295677
- Sies H. 2015. Oxidative stress: a concept in redox biologyand medicine. Redox Biol. 4:180-183. http://doi:10.1016/ j.redox.2015.01.002PMID:25588755
- Silva J A G, Silva G C, Silva TM S, Rangel I 2016. Estudo Fitoquímico das Folhas de Crotonheliotropiifolius Kunth (Euphorbiaceae). Anais I Conbracis. v. 1.
- Sousa C D M, Silva H R, Vieira-Jr G M, Ayres M C C, Costa C D, Araújo D S, Chaves M H. 2007. Total phenols and antioxidant activity of five medicinal plants. *Química nova*, 30(2), 351-355.
- Tegeli, V, Karpe P, Katve V. 2014. Importance of free radical and antioxidant on human health. IJPCBS, 4(4), 1038-1050.
- Van Den Berg, R., Haenen, G. R., van den Berg, H., van der Vijgh, W. & Bast, A. 2000. The predictive value of the antioxidant capacity of structurally related flavonoids using the Trolox equivalent antioxidant capacity (TEAC) assay. *Food Chemistry*, 70(3), 391-395. http://doi.org/10. 1016/S0308-8146(00)00092-3
