

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 08, Issue, 05, pp.4820-4827, May, 2017

RESEARCH ARTICLE

REMARKS ON STRONGLY AND COMPLETELY gs_α**-IRRESOLUTE FUNCTIONS IN TOPOLOGICAL SPACES

Santhini, C. and *Lakshmi Priya, S.

Department of Mathematics, V.V. Vanniaperumal College for Women, Virudhunagar - 626 001, India

ARTICLE INFO	ABSTRACT		
Article History: Received 27 th February, 2017 Received in revised form 17 th March, 2017 Accepted 04 th April, 2017 Published online 30 th May, 2017	The aim of this paper is to introduce and investigate new classes of irresolute functions called completely gs_a^{**} -irresolute functions and strongly gs_a^{**} -irresolute functions in topological spaces via gs_a^{**} -closed sets and obtain some of their characterizations. Moreover we examine the relationships of these functions with the other existing functions.		
Key words:			
gs_a^{**} -continuous functions, gs_a^{**} -irresolute functions, completely			

Copyright©2017, Santhini and Lakshmi Priya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

 gs_{α}^{**} -irresolute functions, strongly gs_{α}^{**} -irresolute functions

In 1972, Crossley and Hildebrand (Crossley and Hildebrand, 1972) introduced the notion of irresoluteness. Irresolute functions give new path towards research. Many different forms of irresolute functions have been introduced over the course of years whose importance is significant in various branches of Mathematics and related sciences (Erdal Ekici and Saeid Jafari, 2008; Navalagi and Abdul-Jabbar, 2006). In 1974, Arya and Gupta (Arya and Gupta, 1974) introduced the notion of completely continuous functions. The purpose of the present paper is to introduce the concept of completely g_{α}^* -irresolute functions and strongly g_{α}^* -irresolute functions via g_{α}^* -closed sets introduced by Santhini et al. (2017) in topological spaces. Also we investigate their relationships along with their basic properties.

Preliminaries

In this section, we recall some basic definitions and properties used in our paper.

Definition: 2.1. A subset A of a topological space (X,τ) is said to be semi* α -open[10] if A \subseteq cl(α intA)

Definition: 2.2. A subset A of a space (X,τ) is called gs_{α}^{**} -closed set [Santhini and Lakshmi Priya, 2017] if scl(A) $\subseteq U$ whenever $A \subset U$ and U is semi* α -open in (X,τ) .

Definition: 2.3. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

(i) Contra-continuous [Dontchev, 1996] if $f^{1}(V)$ is closed in (X,τ) for every open set V in (Y,σ) . (ii) Completely continuous [Arya and Gupta, 1974] if $f^{1}(V)$ is regular open in (X,τ) for every open set V of (Y,σ) . (iii) R-map [Erdal Ekici and Saeid Jafari, 2008] if $f^{1}(V)$ is regular open in (X,τ) for every regular open set V of (Y,σ) .

Definition: 2.4. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called pre-semi* α -open (Robert and Pious Missier, 2014) if f(U) is semi* α -open in (Y,σ) for every semi* α -open set U in (X,τ) .

*Corresponding author: Lakshmi Priya, S.

Department of Mathematics, V.V. Vanniaperumal College for Women, Virudhunagar - 626 001, India.

Definition: 2.5. A function f: $(X,\tau) \to (Y,\sigma)$ is called semi-closed [Devi et al., 1995] if f(F) is semi-closed in (Y,σ) for any closed set F in (X, τ) .

Definition: 2.6. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a gs_a^{**} -continuous [Santhini and Lakshmi Priya, 2017] if f¹(V) is gs_a^{**} closed in (X,τ) for every closed set V in (Y,σ) .

Definition: 2.7. A function f: $X \to Y$ is said to be contra g_{a}^{**} -continuous [Santhini and Lakshmi Priya, 2017] if f¹(V) is g_{a}^{**-} closed in X for every open set V in Y.

Definition: 2.8. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a gs_{α}^{**} -irresolute[Santhini and Lakshmi Priva, 2017] if $f^{1}(V)$ is gs_{α}^{**} closed set in (X,τ) for every gs_{α}^{**} -closed set V in (Y,σ) .

Definition: 2.9. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i) Irresolute [Crossley and Hildebrand, 1972] if $f^{1}(V)$ is semi-closed in (X,τ) for every semi-closed V of (Y,σ) .

(ii) ω -irresolute [Veera Kumar, 1999] if $f^1(V)$ is ω -closed in (X, τ) for each ω - closed V of (Y, σ) .

(iii) gs-irresolute [Devi et al., 1993] if f^1 (V) is gs-closed in (X,τ) for every gs-closed V of (Y,σ) . (iv) gsp-irresolute [Sheik John, 2002] if f^1 (V) is gsp-closed in (X,τ) for every gsp-closed V of (Y,σ) . (v) g*s-irresolute [Pushpalatha, 2011] if f^1 (V) is g*s-closed in (X,τ) for every g*s-closed V of (Y,σ) .

(vi) semi*-irresolute [Pious Missier and Robert, 2014] if $f^{1}(V)$ is semi*-closed set in (X,τ) for every semi*-closed V of (Y,σ) .

(vii) semi* α -irresolute [Robert and Pious Missier, 2014] if f^1 (V) is semi* α -closed set in (X, τ) for every semi* α -closed V of (Y,σ).

Definition: 2.10.

(i) A space X is locally indiscrete [Willard, 1970] if every open set in X is closed.

(ii) A space X is called locally $g_{s_a}^{**}$ -indiscrete [Santhini and Lakshmi Priya, 2017] if every $g_{s_a}^{**}$ -open set is closed in X.

Definition: 2.11.

(i) A space (X,τ) is called a ${}_{\alpha}T_{s**}$ -space [13] if every $g_{s_{\alpha}}**$ -closed set in it is closed.

(ii) A space (X,τ) is called a ^{α}T_{s**}-space[13] if every gs-closed set in it is gs_{α}**-closed.

Definition: 2.12. [Navalagi and Abdul-Jabbar, 2006]

- (i) $r-T_1$ if for every pair of distinct points x and y in X there exists an r-open sets G and H containing x and y respectively such that $x \notin H$ and $y \notin G$.
- (ii) $r-T_2$ if for every pair of distinct points x,y in X there exists disjoint g_{α}^{**} -open sets U and V containing x and y respectively.

Definition: 2.13. [Santhini and Lakshmi Priya, 2017]

- (i) $g_{s_a}^{**}-T_1$ if for every pair of distinct points x,y in X there exists a $g_{s_a}^{**}$ -open set U containing x not y and $g_{s_a}^{**}$ -open set V containing y but not x.
- (ii) $g_{\alpha}^{**}-T_2$ if for every pair of distinct points x,y in X there exists disjoint g_{α}^{**} -open sets U and V containing x and y respectively.

3 Strongly gs_a**-irresolute functions

In this section, strongly g_{α}^{**} -irresolute functions are introduced and investigated.

Definition: 3.1. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called strongly g_{σ}^{**} -irresolute if f¹(V) is closed in (X,τ) for every g_{σ}^{**} -closed set V in (Y,σ) .

Example: 3.2. Let $X = \{a,b,c,d\}, Y = \{a,b,c\}, \tau = \{\phi,X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}$ and $\sigma = \{\phi, Y, \{a,b\}\}$. Then f: $(X,\tau) \rightarrow (Y,\sigma)$ defined by f(a) = b, f(b) = a, f(c) = f(d) = c is strongly $gs_{\alpha}**$ -irresolute.

Theorem: 3.3. (i) Every strongly gs_{α}^{**} -irresolute function is gs_{α}^{**} -irresolute.

- (ii) Every strongly g_{α}^{**} -irresolute function is g^{*s} -irresolute.
- (iii) Every strongly g_{α}^{**} -irresolute function is semi*-irresolute.
- (iv) Every strongly gs_{α}^{**} -irresolute function is irresolute.
- (v) Every strongly gs_{α}^{**} -irresolute function is continuous.

⁽vi) Every strongly gs_{α}^{**} -irresolute function is ω -irresolute.

Proof

(i) Let V be a g_{α}^{**} -closed set in Y. Since f is strongly g_{α}^{**} -irresolute, f ¹(V) is closed set in X. By theorem 3.2[13], f ¹(V) is g_{α}^{**} -closed in X and so f is g_{α}^{**} -irresolute.

(ii) \rightarrow (vi). Similar to the proof of (i).

Remark: 3.4. The converses of the above theorem are need not true as seen from the following examples.

Example: 3.5. Let $X = Y = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$. Then f: $(X,\tau) \rightarrow (Y,\sigma)$ defined by f(a) = c, f(b) = a, f(c) = b is gs_{α}^{**} -irresolute but not strongly gs_{α}^{**} -irresolute.

Example: 3.6. Let $X = \{a,b,c,d\}$, $Y = \{a,b,c\}$, $\tau = \{\phi,X, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{\phi, Y, \{a, b\}\}$. Then f: $(X,\tau) \rightarrow (Y,\sigma)$ defined by f(a) = b, f(b) = a, f(c) = f(d) = c is g*s-irresolute but not strongly g_{α}^{**} -irresolute.

Example: 3.7. Let $X = \{a,b,c,d\}$, $Y = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Then f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = f(b) = a, f(c) = b, f(d) = c is semi*-irresolute but not strongly gs_{α} *-irresolute.

Example: 3.8. Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, X, \{c\}, \{a, d\}, \{a, c, d\}\}$ and $\sigma = \{\phi, Y, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = b, f(b) = c, f(c) = d, f(d) = a is irresolute but not strongly g_{α}^{**} -irresolute.

Example: 3.9. Let $X = Y = \{a,b,c\}$, $\tau = \{\phi,X, \{a\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a,b\}\}$. Then f: $(X,\tau) \rightarrow (Y,\sigma)$ defined by f(a) = b, f(b) = a, f(c) = c is continuous but not strongly gs_{α}^{**} -irresolute.

Example: 3.10. Let $X = \{a,b,c,d\}$, $Y = \{a,b,c\}$, $\tau = \{\phi,X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. Then f: $(X,\tau) \rightarrow (Y,\sigma)$ defined by f(a) = b, f(b) = a, f(c) = f(d) = c is ω -irresolute but not strongly gs_{α}^{**} -irresolute.

Characterizations of strongly gs_α**-irresolute functions

Theorem: 4.1. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function then the following are equivalent

- (1) f is strongly gs_{α}^{**} -irresolute.
- (2) For every g_{α}^{**} -open set F of Y, f ¹(F) is open in X.

Proof

- (1) \Rightarrow (2). Let F be a gs_a**-open set in Y. Then Y-F is a gs_a**-closed set in Y. By (1), f⁻¹(Y F) = X f⁻¹(F) is closed in X which implies f⁻¹(F) is open in X.
- (2) \Rightarrow (1). Similar to the proof of (1) \Rightarrow (2).

Theorem: 4.2. Let f: $(X,\tau) \to (Y,\sigma)$ is strongly gs_{α}^{**} -irresolute function. Then for each $x \in X$ and each gs_{α}^{**} -open set V of Y containing f(x), there exists an open set U of X containing x such that $f(U) \subseteq V$.

Proof. Let $x \in X$ and V be any g_{α}^{**} -open set of Y containing f(x). Since f is strongly g_{α}^{**} -irresolute, f¹(V) is open in X and containing x. Let $U = f^{1}(V)$. Then U is an open subset of X containing x and $f(U) \subseteq V$.

Theorem: 4.3. If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a pre-semi* α -open, strongly g_{α} **-irresolute function, then f is g_{α} **-irresolute.

Proof. Let B be g_{α}^{**} -closed in (Y,σ) and U be a semi* α -open set containing f ¹(B). Then B \subseteq f(U), where f(U) is pre-semi* α -open in (Y,σ) . Since B is g_{α}^{**} -closed, scl (B) \subseteq f(U) and hence f ¹(scl(B)) \subseteq U. Since f is strongly g_{α}^{**} -irresolute, f ¹(scl(B)) is closed in (X,τ) . By theorem 3.2 [Santhini and Lakshmi Priya, 2017], f ¹(scl(B)) is g_{α}^{**} -closed in (X,τ) . Thus scl(f ¹(scl(B))) \subseteq U. Consequently scl(f ¹(B)) \subseteq scl(f ¹(scl(B))) \subseteq U which shows that f ¹(B) is g_{α}^{**} -closed in (X,τ) .

Theorem: 4.4.

Let f: $(X,\tau) \to (Y,\sigma)$ and g: $(Y,\sigma) \to (Z,\mu)$ be any functions. Then

- (i) g f: $(X,\tau) \rightarrow (Z,\mu)$ is strongly g_{α}^{**} -irresolute and g is strongly g_{α}^{**} -irresolute and f is strongly g_{α}^{**} -irresolute.
- (ii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is gs_{α}^{**} -irresolute and g is strongly gs_{α}^{**} -irresolute and f is gs_{α}^{**} -irresolute.
- (iii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is contra g_{α}^{**} -continuous and g is contra-continuous and f is strongly g_{α}^{**} -irresolute.
- (iv) g f: $(X,\tau) \rightarrow (Z,\mu)$ is continuous and g is strongly gs_{α}^{**} -irresolute and f is
- continuous.
- (v) g f: $(X,\tau) \rightarrow (Z,\mu)$ is irresolute and g is strongly g_{α}^{**} -irresolute and f is irresolute.
- (vi) g f: $(X,\tau) \rightarrow (Z,\mu)$ is g*s-irresolute and g is strongly g_{α}^{**} -irresolute and f is

g*s-irresolute.

(vii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is gs_{α}^{**} -irresolute and g is strongly gs_{α}^{**} -irresolute and f is strongly gs_{α}^{**} -irresolute.

Proof

- (i) Let V be a gs_a^{**} -closed set in Z. Since g is strongly gs_a^{**} -irresolute, g ¹(V) is closed in Y. By theorem 3.2 [Santhini and Lakshmi Priya, 2017], g ¹(V) is gs_a^{**} -closed in Y. Since f is strongly gs_a^{**} -irresolute, f ¹(g ¹(V)) = (g f) ¹(V) is closed in X and hence g f is strongly gs_a^{**} -irresolute.
- (ii) \rightarrow (viii). Similar to the proof of (i).

Theorem: 4.5. If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is strongly gs_{α}^{**} -irresolute where X is locally gs_{α}^{**} -indiscrete then f is contracontinuous.

Proof. Let V be an open set in Y. By theorem 5.2[Santhini and Lakshmi Priya, 2017], V is g_{α}^{**} -open in Y.Since f is strongly g_{α}^{**} -irresolute, $f^{1}(V)$ is open in X and hence $f^{1}(V)$ is g_{α}^{**} -open in X. Since X is locally g_{α}^{**} -indiscrete, $f^{1}(V)$ is closed in X and hence f is contra-continuous.

Theorem: 4.6. If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is strongly gs_{α}^{**} -irresolute where Y is locally indiscrete then f is contra gs_{α}^{**} -continuous.

Proof. Let V be an open set in Y. Since Y is locally indiscrete, V is closed in Y. By theorem 3.2 [Santhini and Lakshmi Priya, 2017], V is g_{α}^{**} -closed in X. Since f is strongly g_{α}^{**} -irresolute, f¹(V) is closed in X and hence f is contra g_{α}^{**} -continuous.

Theorem: 4.7. If a function f: $X \rightarrow Y$ is gs_{α}^{**} -irresolute where X is a ${}_{\alpha}T_{s^{**}}$ -space then f is strongly gs_{α}^{**} -irresolute.

Proof. Let U be a gs_{α}^{**} -closed set in Y. Since f is gs_{α}^{**} -irresolute, f¹(U) is gs_{α}^{**} -closed in X. But X is a ${}_{\alpha}T_{s^{**}}$ -space, f¹(U) is closed in X and so f is strongly gs_{α}^{**} -irresolute.

Theorem: 4.8. Let X and Z be any topological spaces and Y be a ${}^{\alpha}T_{s^{**}}$ -space then g $f: (X, \tau) \to (Z, \mu)$ is strongly gs_{α}^{**} -irresolute if g is gs-irresolute and f is strongly gs_{α}^{**} -irresolute.

Proof. Let U be any gs_{α}^{**} -closed set in Z. Since g is gs-irresolute, g¹(U) is gs-closed in Y. But Y is a ${}^{\alpha}T_{s^{**}}$ -space implies g¹(U) is gs_{α}^{**} -closed in Y. Since f is strongly gs_{α}^{**} -irresolute, f¹(g¹(U)) = (g f)¹(U) is closed in X and hence g f is strongly gs_{α}^{**-} irresolute.

Completely gs_a**-Irresolute functions

In this section, the concepts of completely g_{α}^{**} -irresolute functions are introduced and studied.

Definition: 5.1. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a completely gs_a^{**} -irresolute if $f^1(V)$ is regular open in (X,τ) for every gs_a^{**} -open set V in (Y,σ) .

Example: 5.2. Let $X = \{a,b,c,d\}$, $Y = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $\sigma = \{\phi, Y, \{a, b\}\}$. Then f: $(X,\tau) \rightarrow (Y,\sigma)$ defined by f(a) = f(d) = c, f(c) = a, f(b) = b is completely g_{α}^{*} -irresolute.

Theorem: 5.3.

The following are equivalent for a function f: $(X,\tau) \rightarrow (Y,\sigma)$.

(1) f is completely gs_{α}^{**} -irresolute.

- (2) For each $x \in X$ and each gs_{α}^{**} -open set V and Y containing f(x) there exists a regular open set U in X containing x such that $f(U) \subseteq V$.
- (3) For every gs_{α}^{**} -closed set V of Y, $f^{1}(V)$ is regular closed in X.

Proof.

(1) \Rightarrow (2). Let $x \in X$ and V be a gs_{α}^{**} -open set in Y containing f(x). Since f is completely gs_{α}^{**} -irresolute, $f^{1}(V)$ is regular open in X containing x. Take $U = f^{1}(V)$. Then U is regular open in V containing x such that $f(U) \subseteq V$.

- (2) \Rightarrow (1). Let V be a gs_{α}^{**} -open set in Y such that $x \in f^{1}(V)$. Then V is an gs_{α}^{**} -open set containing f(x). By the assumption, there exists a regular open set U_{x} in X containing x such that $f(U) \subseteq V$ which implies $U \subseteq f^{1}(V)$. Therefore, $f^{1}(V) = \bigcup \{U_{x} : x \in f^{1}(V)\}$. Consequently $f^{1}(V)$ regular open in X.
- (1) \Rightarrow (3). Let V be an g_{α}^{**} -open set in Y. Then Y–V is g_{α}^{**} -open set in Y. By (1), $f^{1}(Y = V) = X f^{1}(V)$ is regular open in X which implies $f^{1}(V)$ is regular closed set in X.

(3) \Rightarrow (1). Similar to the proof of (1) \Rightarrow (3). (2) \Rightarrow (3). Similar to the proof of (2) \Rightarrow (1).

(2) \Rightarrow (2). Similar to the proof of (1) \Rightarrow (2).

Theorem: 5.4. Every completely g_{a}^{**} -irresolute function is g_{a}^{**} -irresolute but not conversely.

Proof. Let V be a g_{α}^* -closed set in Y. Since f is completely g_{α}^* -irresolute, f¹(V) is regular closed in X. By theorem 3.2[13], f¹(V) is g_{α}^* -closed in X and so f is g_{α}^* -irresolute.

Example: 5.5. Let $X = Y = \{a,b,c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a, b\}\}$. Then f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = b, f(b) = a, f(c) = c is gs_{α}^{**} -irresolute but not completely gs_{α}^{**} -irresolute.

Theorem: 5.6. Every completely g_{α}^{**} -irresolute function is strongly g_{α}^{**} -irresolute but not conversely.

Proof. Let V be g_{α}^{**} -closed set in y. Since f is completely g_{α}^{**} -irresolute, $f^{1}(V)$ is regular closed in X and so $f^{1}(V)$ is closed in X and hence f is strongly g_{α}^{**} -irresolute.

Example: 5.7. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$. Then f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = b, f(c) = c is strongly gs_a^{**} -irresolute but not completely gs_a^{**} -irresolute.

Theorem: 5.8. Every completely $g_{s_{\alpha}}^{**}$ -irresolute function is completely continuous but not conversely.

Proof. Let V be an open set in Y. By theorem 5.2[13], V is g_{α}^{**} -open set in Y. Since f is completely g_{α}^{**} -irresolute, $f^{1}(V)$ is regular open in X and so f is completely continuous.

Example: 5.9. Let $X = \{a,b,c,d\}$, $Y = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{d\}, \{a, d\}, \{b, d\}, \{a, b\}, \{a, b, d\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$. Then f: $(X,\tau) \rightarrow (Y,\sigma)$ defined by f(a) = b, f(b) = f(c) = c, f(d) = a is completely-continuous but not completely gs_{α}^{**} -irresolute.

Theorem: 5.10. Every completely g_{α}^{**} -irresolute function is g_{α}^{**} -continuous but not conversely.

Proof. Similar to the proof of theorem 5.8.

Example: 5.11. Let $X = Y = \{a,b,c\}, \tau = \{\phi,X, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{\phi, Y, \{a,b\}\}$. Then $f: (X, \tau) \rightarrow (Y,\sigma)$ defined by f(a) = c, f(b) = a, f(c) = b is gs_{α}^{**} -continuous but not completely gs_{α}^{**} -irresolute.

Theorem: 5.12. Every completely g_{α}^{**} -irresolute function is a R-map but not conversely.

Proof. Let V be a regular open set in Y. By theorem 5.2 [Santhini and Lakshmi Priya, 2017], V is gs_{α}^{**} -open in Y. Since f is completely gs_{α}^{**} -irresolute, $f^{1}(V)$ is regular open in X and so f is a R-map.

Example: 5.13. Let $X = \{a, b, c, d\}$, $Y = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{d\}, \{a, d\}, \{b, d\}, \{a, b\}, \{a, b, d\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Then f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = f(c) = c, f(b) = a, f(d) = b is a R-map but not completely g_{α}^{**} -irresolute.

Theorem: 5.14. Every completely g_{a}^{**} -irresolute function is an irresolute but not conversely.

Proof. Let V be a semi-closed set in Y. By theorem 3.2[Santhini and Lakshmi Priya, 2017], V is g_{α}^{**} -closed in Y and so $f^{1}(V)$ is regular closed in X. Consequently $f^{1}(V)$ is semi-closed in X and so f is an irresolute function.

Example: 5.15. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$. Then f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = c, f(b) = a, f(c) = b is irresolute but not completely gs_{α}^{**} -irresolute.

Characterizations of completely gs_a**-irresolute Functions

Theorem: 6.1. If A is gs_{α}^{**} -closed in (X,τ) and if f: $(X,\tau) \rightarrow (Y,\sigma)$ is semi* α - irresolute and semi-closed then f(A) is gs_{α}^{**} -closed in (Y,σ) .

Proof. Let F be any semi* α -open set in (Y,σ) such that $f(A) \subseteq F$. Then $A \subseteq f^{-1}(F)$. Since f is semi* α -irresolute, $f^{-1}(F)$ is semi* α -open in (X,τ) . Now A is gs_{α} **-closed implies scl $(A) \subseteq f^{-1}(F)$. Then $f(scl(A)) \subseteq F$. Since f(scl(A)) is a semi-closed set in (Y,σ) . By theorem 3.2[Santhini and Lakshmi Priya, 2017], f(scl(A)) is gs_{α} **-closed in (Y,σ) and hence scl $(f(scl(A))) \subseteq F$. Now, $A \subseteq scl(A)$ implies $f(A) \subseteq f(scl(A))$. Hence $scl(f(A)) \subseteq scl(f(scl(A))) \subseteq F$ and so f(A) is gs_{α} **-closed in (Y,σ) .

Theorem: 6.2. Let $F: X \to Y$ be a completely g_{α}^{**} -irresolute function where X is a locally indiscrete space then f is contra g_{α}^{**-} continuous.

Proof. Let V be an open set in Y. By theorem 5.2 [Santhini and Lakshmi Priya, 2017], V is g_{α}^{**} -open set in Y. By hypothesis, f^{1} (V) is regular open in X. Since X is locally indiscrete, f^{1} (V) is closed in X. By theorem 3.2[Santhini and Lakshmi Priya, 2017], f^{1} (V) is g_{α}^{**} -closed set in X and so f is contra g_{α}^{**} -continuous.

Theorem: 6.3. If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is completely gs_{α}^{**} -irresolute map where Y is a locally gs_{α}^{**} -indiscrete space and g: $(Y,\sigma) \rightarrow (Z,\mu)$ is strongly gs_{α}^{**} -irresolute function then g f is contra-continuous.

Proof. Let V be any closed set in Z. By theorem 3.2[Santhini and Lakshmi Priya, 2017], V is g_{α}^{**} -closed in Y. Since g is strongly g_{α}^{**} -irresolute, $g^{-1}(V)$ is closed in Y. But Y is locally g_{α}^{**} -indiscrete, $g^{-1}(V)$ is open in Y. By theorem 5.2[Santhini and Lakshmi Priya, 2017], $g^{-1}(V)$ is a g_{α}^{**} -open in Y. Since f is completely g_{α}^{**} -irresolute, $f^{-1}(g^{-1}(V)) = (g - f)^{-1}(V)$ is regular open in X and hence g f is contra-continuous.

Theorem: 6.4. If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is completely $g_{s_{\alpha}}^{**}$ -irresolute map where Y is a locally $g_{s_{\alpha}}^{**}$ -indiscrete space and g: $(Y,\sigma) \rightarrow (Z,\mu)$ is strongly $g_{s_{\alpha}}^{**}$ - irresolute function then g f is contra $g_{s_{\alpha}}^{**}$ -continuous.

Proof. By theorem 6.3 and by theorem 5.6 in [Santhini and Lakshmi Priya, 2017].

Lemma: 6.5. [6] Let S be an open subset of a space(X,τ). Then the following hold:

(i) If U is regular open in X, then so is $U \cap S$ in the subspace (S, τ_s) . (ii) If $B \subset S$ is regular open in (S, τ_s) , then there exists a regular open set U in (X, τ) such that $B = U \cap S$.

Theorem: 6.6. If $f: (X,\tau) \to (Y,\sigma)$ is a completely gs_{α}^{**} -irresolute function and A is any open subset of X, then the restriction f/A: A \to Y is completely gs_{α}^{**} -irresolute.

Proof. Let F be a gs_a^{**} -open set of Y. Since f is completely gs_a^{**} -irresolute, $f^{-1}(F)$ is regular open in X. Since A is open in X. By Lemma 4.3, $(f/A)^{-1}(F) = f^{-1}(F) \cap A$ is regular open in A and hence f/A is completely gs_a^{**} -irresolute.

Theorem: 6.7. If a function f: $X \to Y$ be a function and g: $X \to X \times Y$ be the graph of f defined by g(x) = (x, f(x)) for every $x \in X$. If g is completely gs_{α}^{**} -irresolute, Then f is completely gs_{α}^{**} -irresolute.

Proof. Let U be an g_{α}^{**} -open set in Y, then $X \times U$ is an g_{α}^{**} -open set in $X \times Y$. Since g is completely g_{α}^{**} -irresolute, f¹(U) = g¹(X \times U) is regular open in X. Thus f is completely g_{α}^{**} -irresolute.

Theorem: 6.8. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$ be any functions. Then (i) $g f: (X, \tau) \to (Z, \mu)$ is completely continuous if g is gs_a^{**} -continuous and f is completely gs_a^{**} -irresolute.

(ii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is completely g_{α}^{**} -irresolute if g is g_{α}^{**} -irresolute and f is completely g_{α}^{**} -irresolute.

(iii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is gs_{α}^{**} -continuous if g is gs_{α}^{**} -irresolute and f is completely gs_{α}^{**} -irresolute.

(iv) g f: $(X,\tau) \rightarrow (Z,\mu)$ is completely $g_{s_{\alpha}}^{**}$ -irresolute if g is completely $g_{s_{\alpha}}^{**}$ -irresolute and f is completely $g_{s_{\alpha}}^{**}$ -irresolute.

(v) g f: $(X,\tau) \rightarrow (Z,\mu)$ is completely gs_{α}^{**} -irresolute if g is completely gs_{α}^{**} -irresolute and f is a R-map.

(vi) g f: $(X,\tau) \rightarrow (Z,\mu)$ is contra gs_{α}^{**} -continuous if g is completely gs_{α}^{**} -irresolute and f is contra gs_{α}^{**} -continuous.

(vii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is strongly $g_{s_{\alpha}}^{**}$ -irresolute and g is completely $g_{s_{\alpha}}^{**}$ -irresolute and f is continuous.

(viii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is strongly gs_{α}^{**} -irresolute and g is completely gs_{α}^{**} -irresolute and f is R-map.

(ix) g f: $(X,\tau) \rightarrow (Z,\mu)$ is gs_{α}^{**} -continuous and g is completely gs_{α}^{**} -irresolute and f is strongly gs_{α}^{**} -irresolute.

Proof.

(i) Let V be an open set in Z. Since g is g_{α}^{**} -continuous, $g^{1}(V)$ is g_{α}^{**} -open in Y. Since f is completely g_{α}^{**} -irresolute, $f^{1}(g^{1}(V)) = (g f)^{1}(V)$ is regular open in X. Hence g f is completely continuous.

(ii) \rightarrow (ix). Similar to the proof of (i).

Theorem: 6.9.

Let $f \colon (X, \tau \) \to (Y, \sigma)$ and $g \colon (Y, \sigma) \to (Z, \mu)$ be any functions. Then

(i) g f: $(X,\tau) \rightarrow (Z,\mu)$ is ω -irresolute if g is completely gs_{α}^{**} -irresolute and f is ω -irresolute.

(ii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is semi*-irresolute if g is completely gs_{α}^{**} -irresolute and f is semi*-irresolute.

(iii) g f: $(X,\tau) \rightarrow (Z,\mu)$ is irresolute if g is completely gs_{α}^{**} -irresolute and f is irresolute.

(iv) g f: $(X,\tau) \rightarrow (Z,\mu)$ is g*s-irresolute if g is completely gs_{α}^{**} -irresolute and f is g*s-irresolute.

(v) g f: $(X,\tau) \rightarrow (Z,\mu)$ is gs_a^{**} -irresolute if g is completely gs_a^{**} -irresolute and f is gs_a^{**} -irresolute.

(vi) g f: $(X,\tau) \rightarrow (Z,\mu)$ is gs_{α}^{**} -irresolute if g is completely gs_{α}^{**} -irresolute and f is irresolute.

(vii) g $f: (X,\tau) \to (Z,\mu)$ is gs_{α}^{**} -irresolute if g is completely gs_{α}^{**} -irresolute and f is g*s-irresolute.

Proof.

(i) Let V be a ω -closed set in Z. By theorem 3.2[Robert and Pious Missier, 2014], V is g_{α}^{**} -closed in Y. Since g is completely g_{α}^{**} -irresolute, $g^{-1}(V)$ is regular closed in Y. Since f is ω -irresolute, $f^{-1}(g^{-1}(V)) = (g - f)^{-1}(V)$ is ω -closed in X. Hence g - f is ω -irresolute.

(ii) \rightarrow (vii). Similar to the proof of (i).

Theorem: 6.10. Let X and Z be any topological spaces and Y be a ${}^{\alpha}T_{s^{**}}$ -space then $g f: (X,\tau) \to (Z,\mu)$ is gs_{α}^{**} -continuous if g is gs-irresolute and f is completely gs_{α}^{**} -irresolute.

Proof. Let U be any closed set in Z. Then U is gs-closed in Z. Since g is gs-irresolute, $g^{-1}(U)$ is gs-closed in Y. Now Y is a ${}^{\alpha}T_{s^{**-}}$ space implies $g^{-1}(U)$ is gs_{α}^{**-} -closed in Y. Since f is completely gs_{α}^{**-} -irresolute, $f^{-1}(g^{-1}(U)) = (g - f)^{-1}(U)$ is regular closed in X. By theorem 3.2[Santhini and Lakshmi Priya, 2017], $f^{-1}(U)$ is gs_{α}^{**-} -closed in X. Hence g - f is gs_{α}^{**-} -continuous.

Theorem: 6.11. If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is completely g_{α}^{**} -irresolute where X is locally g_{α}^{**} -indiscrete then f is contracontinuous.

Proof. By theorem 4.5 and by theorem 5.6 in [Santhini and Lakshmi Priya, 2017].

Theorem: 6.12. If a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is completely gs_{α}^{**} -irresolute and the space X is locally gs_{α}^{**} -indiscrete then f is contra gs_{α}^{**} -continuous.

Proof. By theorem 4.5 and by theorem 5.6 in [Santhini and Lakshmi Priya, 2017].

Theorem: 6.13. If a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is completely gs_{α}^{**} -irresolute where Y is a locally gs_{α}^{**} -indiscrete space and g: $(Y, \sigma) \rightarrow (Z, \mu)$ is a gs_{α}^{**} -continuous function then g f is contra-continuous.

Proof. Let V be any closed set in Z. Since g is gs_{α}^{**} -continuous, g ¹(V) is gs_{α}^{**} -closed. But Y is locally gs_{α}^{**} -indiscrete implies g ¹(V) is open in Y. By theorem 5.2[Santhini and Lakshmi Priya, 2017], g ¹(V) is gs_{α}^{**} -open in Y. Since f is completely gs_{α}^{**-} irresolute, f ¹(g ¹(V)) = (g f) ¹(V) is regular open in X and hence g f is contra-continuous.

Theorem: 6.14. If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is completely gs_{α}^{**} -irresolute where Y is a locally gs_{α}^{**} -indiscrete space and g: $(Y,\sigma) \rightarrow (Z,\mu)$ is gs_{α}^{**} -continuous function then g f is contra gs_{α}^{**} -continuous.

Proof. By theorem 6.13 and by theorem 5.6 in [Santhini and Lakshmi Priya, 2017].

Theorem: 6.15. If f: $(X,\tau) \rightarrow (Y,\sigma)$ is completely g_{α}^{**} -irresolute injective function and Y is g_{α}^{**} -T₁ then X is r-T₁.

Proof. Let x,y be any distinct points of X. Since f is injective, then $f(x) \neq f(y)$. Since Y is $gs_{\alpha}^{**}-T_1$, there exists gs_{α}^{**} -open sets V and W in Y such that $f(x) \in V$, $f(y) \in W$, $f(x) \notin W$, $f(y) \notin V$. Since f is completely gs_{α}^{**} -irresolute, $f^{-1}(V)$ and $f^{-1}(W)$ are regular open sets in X such that $x \in f^{-1}(V)$, $y \notin f^{-1}(W)$, $x \notin f^{-1}(W)$, $y \notin f^{-1}(V)$. It follows that X is r-T₁.

Theorem: 6.16. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a completely gs_{α}^{**} -irresolute injective function if Y is gs_{α}^{**} -T₂ then X is r-T₂.

Proof. Let x, y be any distinct points of X. Since f is injective, then $f(x) \neq f(y)$. Since Y is $gs_{\alpha}^{**}-T_2$, there exists gs_{α}^{**} -open sets V and W in Y such that $f(x) \in V$, $f(y) \in W$ and $V \cap W = \varphi$. Since f is completely gs_{α}^{**} -irresolute, $f^{-1}(V)$ and $f^{-1}(W)$ are regular open sets in X such that $x \in f^{-1}(V)$, $y \in f^{-1}(W)$ and $x \in f^{-1}(V) \cap f^{-1}(W) = \varphi$. This shows that X is r-T₂.

Remark: 6.17. The following table shows the relationships between g_{α}^{**} -irresolute maps, completely g_{α}^{**} -irresolute maps and strongly g_{α}^{**} -irresolute maps. The symbol "1" in a cell means that a map implies the other maps and the symbol "0" means that a map does not imply the other maps.

Irresolute map	gs _α **	completely gs _α **	strongly gs _α **
gs _α **	1	0	0
completely gs _α **	1	1	1
strongly gs _α **	1	0	1

REFERENCES

Arya, S.P. and Gupta, R. 1974. On Strongly continuous mappings, Kyungpook Math. J. 14, 131-143. Crossley, S.G. and Hildebrand, S.K. 1972. semi-topological properties, Fund Math; 74, 233-254. Devi R. Maki H. and Balachandran K. 1993. "semi-generalized closed maps and generalized semi-

Devi, R., Maki, H. and Balachandran, K. 1993. "semi generalized closed maps and generalized semi closed maps," Memoirs of the Faculty of Science Kochi university Series A, vol. 14, pp. 41-54.

- Devi, R., Balachandran, K. and Maki, H. 1995. Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J. Pure Appl. Math., 26, 271-284.
- Dontchev, J. 1996. Contra-continuous functions and strongly S-closed spaces, Internat. J.Math. Math. sci. 19, 303-310.

Erdal Ekici and Saeid Jafari, 2008. On a Weaker Form of Complete Irresoluteness, Bol. Soc. Paran. Mat., 26, 1-2, 81-87.

Long, P.E. and Herrington, L.L. 1978. Basic properties of regular closed functions, Rend. Circ. Mat. Palermo, 27, 20-28.

- Navalagi, G.B. and Abdul-Jabbar, A.M. 2006. Some remarks on Completely α-irresolute functions, International Journal of Mathematical sciences vol.5, No.1, 1-8.
- Pious Missier, S. and Robert, A. 2014. More Functions Associated with Semi-star-open Sets, International Journal of Scientific and Innovative Mathematical Research, vol.2 5, pp 460-468.
- Pushpalatha, A. 2011. On g*s closed sets in Topological spaces, Int. J. Contemp Math. Sciences, Vol. 6 19, pp 917-929.
- Robert, A. and Pious Missier, S. 2014. A New class of sets weaker than α-open sets, International Journal of Mathematics and Soft comparing, 4(6), 34-41.
- Robert, A. and Pious Missier, S. 2014. Semi-Star-Alpha-Open sets and Associated Functions, International Journal of Computer Applications, vol. 104.
- Santhini, C. and Lakshmi Priya, S. 2017. *New class of generalized closed sets in topological spaces*, Proceedings of International Conference on Recent trends in Applied Mathematics, S.R.N.M. College, Sattur, 2017.
- Santhini, C. and Lakshmi Priya, S. Some new concepts of continuity in topological spaces, Accepted for publication (International Journal of Mathematical Archive).
- Sheik John, M. 2002. A Study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D., Thesis, Bharathiar University, Coimbatore (2002).
- Veera Kumar, M.K.R.S. 1999. Semi-pregeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A 493 Math., 19, 3346. Willard, S. 1970. General Topology, Addition Wesley (1970).
