
  
         
                                        
 
 

 

 
 

 
 

 
RESEARCH ARTICLE 

 
NUMERICAL SOLUTION OF BURGERS’ EQUATION USING FOURIER EXPANSION BASED ON 

DIFFERENTIAL QUADRATURE METHOD 
 

Tadesse Mamo, Alemayehu Shiferaw and *Masho Jima 
 

Department	of	Mathematics,	Jimma	Unversity,	Ethiopia	
	

 
 

 ARTICLE INFO    ABSTRACT 
 

 

The Fourier expansion-based differential quadrature (FDQ) method was applied in this work to solve 
one-dimensional Burgers’ equation with appropriate initial and boundary conditions. In the first step for 
the given problem we have discretized the interval and replaced the differential equation by the Fourier 
expansion basis based on differential quadrature (FDQ) to obtain a system of ordinary differential 
equation (ODE). The obtained ordinary differential equation was solved by fourth order classical 
Range-Kutta method. Finally the validation of the present scheme was demonstrated by numerical 
example and compared with some existing numerical methods in literature. The method is analyzed for 
stability and convergence. It is found that the proposed numerical scheme produce accurate results and 
quite easy to implement. 
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INTRODUCTION 
 

 
Numerical analysis is the branch of mathematics that plays a prominent role in pure, and applied mathematics, as well as in 
sciences. The design and computation of a numerical algorithm is one of the mathematical challenges that we are facing these 
days. Despite the rapid development of computational methods, problems involving non-linearity, discontinuity, multiple scale, 
singularity and irregularity continue to pose challenges in the field of computational science and engineering (Shu, 2000). Many 
scientists in the field of computational mathematics are trying to develop algorithm for numerical methods by using modern 
computers.  One of this is a Differential Quadrature Method. Of the various numerical solutions, differential quadrature (DQ) 
methods have distinguished themselves because of their high accuracy, straightforward implementation and generality in a variety 
of problems (Shu and Chew, 1999). 
 
Burger’s Equation 
 
The one dimensional Burgers’ equation is given by 
 

       
2

2
, , , ,u x t u x t u x t v u x t

t x x

  
 

  
 

 

is a nonlinear PDE and has a wide application in  various areas of applied mathematics, such as fluid mechanics, nonlinear 
acoustics, gas dynamics, traffic flow (Cole,1951). The study of the solution of Burgers’ equation has been carried out for last half 
Century and still it is an active area of research to develop some better numerical scheme to approximate its solution. 
 

Fourier Expansion Basis 
 

The polynomial approximation is suitable for most of the engineering problems, but for some problems, especially for those with 
periodic behaviors, Fourier series expansion could be a better choice for the true solution instead of polynomial approximation 
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(Shu and Richard, 1992) and (Shu et al., 1995). For a continuous function ( )f x on the interval [0, 2π], the Fourier series 

expansion can be given by 
 

 0( ) cos sink kf x c c kx d kx  
 

 

Where the coefficient 0 , kc c and kd  are expressed as 
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In practice, the truncated Fourier series expansion is usually used. Thus, 
 

1 0
1 1

( ) ( ) cos sin
N N

N k k
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The convergence of the above expansion to ( )f x  as N tends to infinity is guaranteed by Weierstrass’s second theorem. 

 

Theorem 1: Let ( )f x  be a continuous function on the interval [0, 2π]. Then for any ε >0, there exists an integer N  and a 

trigonometric sum NS such that the inequality 

 

[0,2 ]
max ( ) ( )N

x
f x S x





   

 
is satisfied, where 
 

0
1 1

( ) cos sin
N N

N k k
k k

S x a a kx b kx
 

    . 

 
The proof of this theorem can be found in the book of (Achieser, 1992) and (Weierstrass, 1886) [1 and 25]. It is shown that the 

approximation in Eq. (7) satisfies the operations of vector addition and scalar multiplication. So, 1( )NF x  consists of a linear 

vector space 1NV   in which there exists a linearly independent set of base vectors 

 

1,cos ,sin ,...,cos ,sinx x Nx Nx  

 
It is of great importance to determine the function values at discrete nodes for the numerical solution of a partial differential 

equation. Therefore, the Fourier expansion should be expressed in discrete form. Supposing that ix , 0,1,2,...,i N  
are the 

coordinates of ( 1)N  nodes on the interval [0, 2π], and ( )if x  is the function values at the i th  point, the Fourier expansion 

1( )NF x
can be expressed as follows: 
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It is clear that the coefficients , 0,1,...,ix i N , form a set of linearly independent vectors in 1NV  . Thus it is also a basis of 1NV  . 

 
Statement of the Problem 

 
Consider the Burgers’ equation: 
 

   
2

2
0, , (0, ], where 0,1

u u u
v u x t T

t x x

  
     

    
 
With initial condition 
 

( ,0) ( ), 0 1u x f x x    
 
and the boundary condition 
 

(0, ) 0, (1, ) 0, 0t u t t T     

 
Where	� > 0 is the coefficient of kinematic viscosity and the prescribed function �(�) is sufficiently smooth, by using Fourier 
expansion basis based on weighted average differential quadrature method, the Burgers’ equation given by (10) is nonlinear and 
parabolic and one expects to find its solution numerically by using some approximation method. In this regard Kutluary et al. 
solve (10) by the finite difference approximation based on the standard explicit method (Kutluary, 1999) [7] and using least-
squares quadratic B-spline finite element method (Kutluary et al., 2004) same scholars applied a spectral approximation method 
for one dimensional Burgers’ equation (Mittal and Singhal, 1996); R.C Mittal, Ram Jiwari and K.K Sharma used 
quasilinearization to tackle the nonlinearity and followed by semi discretization for spatial direction using DQM (Mittal et al., 
2013); Ram Jiwari, R.C Mittal and K.K Sharmausing weighted average DQM (Jiwari et al., 2013). In this study, the researcher 
look for a solution of one dimensional Burgers’ equation using the Fourier expansion basis based on differential quadrature 
method. As a result, this study attempted to answer the following questions: 
 

1. How do we describe the Fourier expansion basis based on differential quadrature method for one dimensional Burgers’ 
equation? 

2. To what extent the method approximate the existing solutions? 
3. To what extent the present method converges? 

 

MATERIALS AND METHODS 
 
This chapter consists of the following methods and materials that used to carry out the study. These are; study design, study site, 
and period, source of information, study procedure, and ethical considerations. 
 
Study Site and Period 

 
The study was conducted at Jimma University, which is Ethiopia’s first innovative community oriented education institution of 
higher learning, department of Mathematics from September 2015 to 2016. 
 
Study Design 

 
This research employed mixed design; 
 

 Documentary review design 
 Experimental design 

 
Study Area 
 
Conceptually this study focus on Fourier Expansion based on Differential Quadrature method for Burgers’ Equation to 
approximate two point boundary condition. 
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Source of Information 
 

This study mostly depends on documentary materials and the data which have been obtained by the help of MATLAB software. 
So, the sources of information for the study are books, journals and different related studies from internet services and numerical 
data obtained by MATLAB. In addition to this, workshop on MATLAB software was designed and conducted. 
 
Study Procedure 
 
The study is an experimental as it involves entirely laboratory work with the help of computer and MATLAB software. Farther, 
important materials for the study were collected by the researcher using documentary analysis. The required numerical data was 
collected by coding and running using MATLAB software to get the numerical results and the graphs of some examples that have 
exact solution, to show the validity and efficiency the method. In order to achieve the above mentioned objectives, the study is 
follow steps: 
 

 Problem preparation/formulation 
 Discretizing the given interval 
 Replacing the differential equation by the Fourier Expansion basis based on Differential Quadrature method to obtain a 

system of ODE. 
 The Obtained system of Ordinary Differential Equations can be solved by fourth order classical Range - Kutta method. 
 Writing MATLAB code for the tri-diagonal system obtained. 
 Validation of the present scheme by implementing it on numerical examples. 

 

RESULTS AND DISCUSSION 
 
Differential Quadrature Method 
 
For simplicity, the one dimensional problem is chosen to demonstrate the differential quadrature method. Following the idea of an 
integral quadrature that uses a linear weighted summation of all the functional values to approximate an integral over a closed 
domain, the DQ method approximate the derivative of a smooth function at a grid point by a linear weighted summation of all the 

functional value in the whole computational domain. For example the first and second order derivatives of ( )u x  at a point ix are 

approximated by 
 

ux(xi) = ∑aij u(xi), for i=1,2,……, N                    …………………………………………………………………… (1) 

 

( ) ( ), 1,2,...,xx i ij iu x b u x for i N                             …………………………………………………………………… (2) 

 

Where N  is the number of grid points, and ,ij ija b are the weighting coefficients. It is noted that equations (1) and(2) are similar 

except that they use different weighting coefficients. Obviously, the key procedure in DQ is to determine the weighting 

coefficients ija and ijb . 

 
Fourier Expansion Based on Differential Quadrature Method (FDQ) 

 
For this case, the solution of a differential equation is approximated by a Fourier series expansion of the form 
 

0
1

( ) ( cos sin )k k
k

u x c c k x d k x 




                          …………………………………………………………………… (3) 

 

It is easy to show that ( )u x in equations (3) constitutes an ( 1)N  dimensional linear vector space with respect to the operation of 

addition and multiplication. Here, if ( ), 0,1,..., ,kr x k N are the base functions, any function in the space can be expressed as a 

linear combination of ( ), 0,1,..., .kr x k N  It is obviously observed from equations (3) that one set of base functions

1,sin ,cos ,sin 2 ,cos2 ,...,sin ,cosx x x x N x N x      . For generality two sets of base functions are used in FDQ. And 

the other, the Lagrange interpolated trigonometric polynomials are taken as one set of base functions 
 

0 1 1 1

0 1 1 1

sin ( )sin ( )...sin ( )sin ( )...sin ( )
( ) ,

sin ( )sin ( )...sin ( )sin ( )...sin ( )

1, 2,...,

k k N
k

k k k k k k k N

x x x x x x x x x x
r x

x x x x x x x x x x

for k N

    

    
 

 

    


    

         

………………………… (4) 
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Setting 
 

0

( ) sin ( ) ( , ).sin ( )
N

k k k
k

M x x x N x x x x 


          …………………………………………………………………… (5) 

 

Where 
 

0,

( , ) sin ( ) ( )
N

i k i k i
k k i

N x x x x p x
 

                           …………………………………………………………………… (6) 

 

( , ) ( , ).i j i j ijN x x N x x  ,Where ij  is the kronecker delta operator. 

 
Eq. (4) can then be reduced to 
 

( , )
( )

( )
k

k

k

N x x
r x

p x
                                                                 …………………………………………………………………… (7) 

 

We let all the base functions given by Eq. (7) satisfy two linear constrained relation (1) and (2). This results in the following two 
formulations 
 

( , )

( )

i j

ij

j

N x x
a

p x




                                                                  

…………………………………………………………………… (8) 

( , )

( )

i j

ij

j

N x x
b

p x




                                                                      

…………………………………………………………………… (9) 

 

It is observed from Eq. (8) and (9) that the computation of ija and ijb  is equivalent to evaluation of  ,i jN x x and  ,i jN x x

since  jp x can easily be calculated by Eq. (6). To evaluate ( , )i jN x x and  ,i jN x x we successively differentiate Eq. (5) and 

then obtain 
 

( ) ( , ).sin ( ) ( , ).cos ( )k k k kM x N x x x x N x x x x                …………………………………………………… (10) 

 
2( ) ( , ) ( ) 2 ( , ) cos ( ) ( , ) sin ( )k k k k k kM x N x x sin x x N x x x x N x x x x           

         
…………………… (11) 

 

2 3

( ) ( , ) sin ( ) 3 ( , )cos ( )

3 ( , )sin ( ) ( , ) cos ( )

k k k k

k k k k

M x N x x x x N x x x x

N x x x x N x x x x

  

   

     

   
          

…………………………………………… (12) 

 
From the above equations, we can obtain the following results 
 

. ( )
( , ) ,

sin ( )
i

i j

i j

p x
N x x when j i

x x




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
                       

…………………………………………………………………… (13) 

 

( )
( , ) i

i i

M x
N x x




 

                                                           
…………………………………………………………………… (14) 

( ) ( , ) cos ( )
( , ) ,

sin ( )

i i j i j

i j

i j

M x N x x x x
N x x when j i

x x

 



  
  


          …….…………………………………………… (15) 

 

3
2

( , ) ( ) ( , )
3 8

i i i i iN x x M x N x x




      
   

                 …………………………………………………………………… (16) 

 

Substituting Equations (13), (14) into Eq. (8) we obtain 
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( )
. ,
sin ( ), ( )

i
ij

i j j

p x
a when j i

x x p x



 


                   

…………………………………………………………………… (17) 

 

( )

. ( )
i

ii

i

M x
a

p x




                                                                    

…………………………………………………………………… (18) 

 
Similarly, substituting Eq. (15), (16) into Eq. (9) and using equations (17), (18), we obtain 
 

2 ( ) ,ij ii ii i jb a a cot x x when j i                        
………………………………………………………………… (19) 

 
3( )2

3 ( ) 8
i

ii

i

M x
b

p x





 
  

                                                   

…………………………………………………………………… (20) 

 

From equations (17) and (19),  and ( )ij ija b i j can be obtained. However, the calculation of ( .(18))iia Eq and ( .(20))iib Eq

involve the computation of ( )iM x and ( )iM x which are not easy to compute. By applying the second set of base functions 

   1,sin ,cos ,sin 2 ,cos 2 ,...,sin ,cosx x x x N x N x      into equation (1) and (2) and hence 

 

1

0
N

ij
j

a


                                                                             …………………………………………………………………… (21) 

 

1

0
N

ij
j

b


                                                                ………………..…………………………………………………………… (22) 

 

From Eq. (21) and (22), iia and iib can easily calculated from ( )ija i j and ( )ijb i j . 

 
Using equations (17), (19), (21) and (22), the weighting coefficients of the first and second order derivatives in FDQ can be 
calculated. It should be indicated that these equations can be applied to the periodic problems and the non-periodic problems. For 

the non-periodic problems, the x  range in the computational domain is 0 x   , while for the periodic problems, the x range 

in the computational domain is 0 2x   . 
 
Burgers’ Equation and Numerical Discretization 

 
The one-dimensional Burgers’ equation 
 
��

��
− �

���

��� + �
��

��
= 0																																							……………………………………………………………………………………… (23) 

 
Can be discretized in the cartesian coordinate system as 
 

1 1 1

N N N

ik kj ik kj kj ik kj ij
k k k

a u v b u u a u f
  

                     ……….………………………………………………………………… (24) 

Where N is the number of grid points, ika and ikb are the weighting coefficients in the x  direction. When FDQ method is used ika

and ikb are computed by equations (17),(19),(21) and (22). 

 
Error Estimate and Convergence Analyses 

 
To demonstrate the efficiency and accuracy of FDQ method the sample problem which have exact solutions are chosen for the 
study. The computational domain is with length Lx. In this study FDQ method use the Chebyshev-Gauss-Lobatto point 
distribution. 
 

1 1
1 cos , 1, 2,...,

2 1
i x

i
x L i N

N


   
      

             ……………………………………………………………………… (25) 
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Since the sample problems has exact solution, the performance FDQ method measured by maxu which is defined as 

 

max max
iij xu u u  

                                                     
…………………………………………………………………… (26) 

 

Where iju is the numerical solution at the mesh point ix ,
ixu is the exact solution at the same mesh point. The numerical rate of 

convergence (ROC) is calculated using the following formula 
 

 2 1

1 2

log ( ) ( )

log( )

E N E N
ROC

N N
                                              …………………………………………………………………… (27) 

 

Where  iE N  is the maximum error norm L when using jN grid points (Jiwari et al., 2013) 

 
Main Results and Discussion 
 
To illustrate the efficiency of the proposed numerical scheme, we solve three test examples and throughout the numerical 

experiment we consider step length in time space t  . 
 
Example 1: We consider Burgers’ Eq. (23) with initial and boundary conditions in the following form 
 

( ,0) sin , 0 1u x x x                                     …………………………………………………………………………… (28) 

 

(0, ) (1, ) 0, 0u t u t t  
                                                

…………………………………………………………………… (29) 

 

The numerical results for the Example 1 are presented for v  1.0, 0.1, 0.01 in Tables 1 and 2. From Table 1, it is concluded that 
the present scheme gives better results than the results in (Jiwari et al., 2013). Table 2 shows the maximum absolute errors and 
rate of convergence for different value of v . 
 

Table 1. Comparison between exact and numerical solutions of Example1 for v  0.1, 0. 01 at different time and x 

 

X 0.1v   0.01v   

T (Jiwari et al., 2013)

0.0001t  ; ∆x= 0.04 
Present 
scheme 

Exact solution (Jiwari et al., 2013) 
∆t=0.0001; ∆x=0.04 

Present 
scheme 

Exact 
solution 

0.25 0.4 0.30880 0.30884 0.30889 0.34191 0.34191 0.34191 
0.8 0.19565 0.19565 0.19568 0.22151 0.22149 0.22148 
1.0 0.16251 0.16255 0.16256 0.18814 0.18819 0.18819 
3.0 0.02729 0.02722 0.02720 0.07537 0.07512 0.07511 

0.50 0.4 0.56953 0.56958 0.56963 0.66070 0.66071 0.66071 
0.8 0.35922 0.35923 0.35924 0.43913 0.43914 0.43914 
1.0 0.29190 0.29191 0.29192 0.37434 0.37441 0.37442 
3.0 0.04020 0.04022 0.04021 0.15008 0.15009 0.15018 

0.75 0.4 0.62554 0.62543 0.62544 0.91927 0.91025 0.91026 
0.8 0.37409 0.37400 0.37392 0.64739 0.64740 0.64740 
1.0 0.28746 0.28748 0.28747 0.55599 0.55604 0.55605 
3.0 0.02977 0.02977 0.02977 0.22481 0.22481 0.22481 

 
Table 2. Max. Error norms and rate of convergence of Example 1 for various numbers of grids at T = 2.0 and with ∆x= 0.04, ∆t = 0.0001 

 

N  v  = 1.0 v = 0.1 v  = 0.01 

L∞ ROC L∞ ROC L∞ ROC 
8 3.81903E-15 _ 4.66231E-7 _ 3.21680E-4 _ 
16 8.41682E-17 7.126 2.21680E-6 4.830 2.31861E-3 4.010 
32 6.41823E-18 3.563 3.28281E-8 3.001 3.41281E-4 2.892 

 
Example 2: Consider the Burgers’ Eq. (23) with the initial and boundary conditions 
 

( ,0) 4 (1 ), 0 1u x x x x                              ………………..………………………………………………………………… (30) 
 

(0, ) (1, ) 0, 0u t u t t                                          ……….…………………………………………………………………… (31) 
 

The numerical results for the Example 2 are presented for v   1.0; 0.1; 0.01 in Tables 3 and 4. Table 3 makes a comparison of 
present results with exact and numerical solutions available in literature and it is found that the present results are better than the 
results in (Jiwari et al., 2013). Table 4 shows the maximum absolute errors and rate of convergence for different value of v . 
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Table 3. Comparison between exact and numerical solutions of Example 2 for v  0.1, 0.01 at different time and � 
 

X v  = 0.1 v  = 0.01 

T (Shu, 2000) 
∆t=0.0001; ∆x=0.04 

Present 
scheme 

Exact 
solution 

(Shu, 2000) 
∆t=0.0001; ∆x=0.04 

Present 
scheme 

Exact 
solution 

0.25 0.4 0.31744 0.31751 0.31752 0.36213 0.36222 0.36226 
0.8 0.19952 0.19954 0.19956 0.23066 0.23044 0.23045 
1.0 0.16557 0.16563 0.16560 0.19468 0.19467 0.19469 
3.0 0.02775 0.02775 0.02775 0.07613 0.07613 0.07613 

0.50 0.4 0.58443 0.58450 0.58454 0.68357 0.68368 0.68368 
0.8 0.36733 0.36740 0.36740 0.45412 0.45401 0.45371 
1.0 0.29830 0.29834 0.29834 0.38563 0.38566 0.38568 
3.0 0.04106 0.04106 0.04106 0.15217 0.15218 0.15218 

0.75 0.4 0.64556 0.64560 0.64562 0.92064 0.92049 0.92050 
0.8 0.38526 0.38533 0.38534 0.66303 0.66270 0.66272 
1.0 0.29582 0.29587 0.29586 0.56929 0.56931 0.56932 
3.0 0.03043 0.03044 0.03044 0.22774 0.22774 0.22774 

 
Table 4. Max. Error norms and rate of convergence of Example 2 for various numbers of grids at T = 2.0 and with ∆x = 0.04; ∆t = 0.0001 

 

N v  = 1.0 v  = 0.1 v  = 0.01 

L∞ ROC L∞ ROC L∞ ROC 
8 2.16823E-16 _ 6.22861E-6 _ 2.81281E-3 _ 
16 6.42816E-17 6.816 2.32812E-7 3.128 4.41291E-6 3.287 
32 3.31268E-18 5.828 3.32816E-8 2.561 3.21618E-5 2.718 

 
Example 3.Consider the Burgers’ Eq. (23a) with boundary conditions  
 

(0, ) (1, ) 0, 0u t u t t                                       ………………..………………………………………………………………… (32) 
 

and with exact solution 
 

2

2

2 sin( )
( , ) , 0 1

cos( )

vt

vt

v e x
u x t x

e x





 

 




  


        ………………..………………………………………………………………… (33) 

 

Where 1  is a parameter. 
 

For this Example, the numerical results are presented in Tables 5 and 6. Tables 5 and 6 show the L2 and L∞ errors at different 
values of T, v  and the results are compared with (Jiwari et al., 2013). It is found that the present results are better than the results 
presented in (Jiwari et al., 2013). 
 

Table 5. Comparison of L∞ and L2 errors with existing numerical methods of Problem 3 for v = 0.01,  100, ∆t = 0.01, at T = 1.0 

 

N  (Jiwari et al., 2013) Present scheme 

L∞ L2 L∞ L2 ROC 
10 6.001E-11 6.503E-12 3.207E-12 4.283E-12 _ 
20 1.010E-11 9.344E-12 2.1680E14 3.418E-13 4.816 
40 1.227E-10 2.208E-11 6.128E-12 3.813E-12 2.883 
80 8.147E-09 1.017E-11 7.612E-10 5.312E-12 2.582 

 
Table 6. Comparison of L∞ and L2 errors with existing numerical methods of Problem 3 for v = 0.005,   100, ∆t = 0.01, at T = 1.0 

 

N  (Jiwari et al., 2013) Present scheme 

L∞ L2 L∞ L2 ROC 
10 4.708E-08 6.465E-08 8.261E-09 6.561E-08 _ 
20 1.091E-08 4.465E-09 1.830E-08 6.418E-10 4.871 
40 1.980E-09 2.786E-10 2.617E-10 3.341E-11 2.331 
80 7.182E-09 2.665E-10 6.822E-10 8.810E-11 2.563 

 
This method shows a good result as compared with the existing literature (Jiwari et al., 2013). 
 
Conclusion 

 
This paper demonstrates the application of FDQ method to solve one-dimensional Burgers’ equation. Through test examples 
which have exact solution, it was found that the FDQ approach can generally obtain more accurate numerical results than the 
existing approach in the interval[0,0.75]. The accuracy of FDQ results is suddenly improved when number of mesh points is 
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increased to more than 2 1N  , where N equals v  (the wave number), the FDQ results are quite erratic. The proposed numerical 
scheme gives better solution for harmonic (periodic) partial differential equations than the existing scheme. 
 
Future Scope: In the future by applying Fourier expansion based Differential Quadrature (FDQ) method I will try to solve two-/ 
three- dimensional Burgers’ equation and other partial differential equations. 
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