

RESEARCH ARTICLE

OPTIMIZING MATRIX MULTIPLICATION USING MULTITHREADING

*Harsh Patel, Anubhav Chaturvedi and Vishwas Raval

Department of Computer Science & Engineering, Faculty of Technology & Engineering,
The MS University of Baroda, Baroda

 ARTICLE INFO ABSTRACT

Multicore applications can deliver better performance with Pthreads ,which is an API for writing
multithreaded applications to boost the performance of a computer. With the examples presented in this
paper for the multiplication of two NxN matrices with a serial application and a parallel application
using p_threads,one can understand the power of the Pthread apps.

Copyright © 2016, Harsh Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Increasing the clock frequency of a microprocessor was
considered smart-work in the IT industry once. But now a
days, due to heat dissipation and energy consumption issues,
processor developers are switching to a new model where
microprocessors contain multiple processing units called cores.
All the modern computing devices have several cores to meet
the computing requirements. So to get the performance out of
these cores, developers needs to write applications using
parallel computing methods.

Serial:

//serial program to multiply two n*n matrices
[matrix_mul_serial.c]

#include<stdio.h>
#define n 5120
int a[n][n],b[n][n],c[n][n];
int main()

{
int i,j,k;
for(i=0;i<n;i++) //data initialization
for(j-0;j<n;j++)

*Corresponding author: Harsh Patel
Department of Computer Science & Engineering, Faculty of
Technology & Engineering, The MS University of Baroda, Baroda

{

a[i][j]=1;
b[i][j]=1;

}
for(i=0;i<n;i++) //multiplication
for(j=0;j<n;j++)
for(k=0;k<n;k++)
c[i][j]=c[i][j]+a[i][k]*b[k][j];
printf("\n The resultant matrix is \n");
for(i=0;i<n;i++)
{

for(j=0;j<n;j++)
{
printf("%d",c[i][j]);
printf("\n");
}}}

harsh:->cc –o matrix_ser_5120 matrix_mul_serial.c
harsh:->time ./matrix_ser_5120
real 1m1.519s
user 1m1.582s
sys 0m0.002s

Parallel:

//parallel program to multiply two n*n matrices
[matrix_mul_parallel.c]

ISSN: 0976-3376

Asian Journal of Science and Technology
Vol. 07, Issue, 10, pp.3668-3672, October, 2016

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF
SCIENCE AND TECHNOLOGY

Article History:

Received 17th July, 2016
Received in revised form
08th August, 2016
Accepted 20th September, 2016
Published online 30th October, 2016

Key words:

Multithreading, POSIX,
C Programming, Linux,
Time, Bash, Complexity.

#include <stdio.h>
#include<stdlib.h>
#include<pthread.h>
#define n 5120 //global space
#define nthreads 2
int a[n][n],b[n][n],c[n][n];
void *threadfun(void *arg) // each thread
{

int *p=(int *)arg;
int i,j,k;
for(i=*p;i<(*p+(n/nthreads));i++)
for(j=0;j<n;j++)
for(k=0;k<n;k++)
c[i][j]=c[i][j]+a[i][k]*b[k][j];

}
int main()
{

int i,j,k,r,rownos[nthreads];
pthread_t tid[nthreads];
for(i=0;i<n;i++){
for(j=0;j<n;j++){
a[i][j]=1;
b[i][j]=1;

}}

//thread creations using pthreads API

for(i=0;i<nthreads;i++)
{

rownos[i]=i*(n/nthreads);
pthread_create(&tid[i],NULL,threadfun,&rownos[i]);

}

//making main thread to wait untill all other

for(i=0;i<nthreads;i++)
pthread_join(tid[i],NULL);

for(i=0;i<n;i++)
{

for(j=0;j<n;j++)
printf("%d",c[i][j]);
printf("\n");

}
}

harsh:->cc –o matrix_par matrix_mul_parallel.c -lpthresd
harsh:->time ./matrix_par
real 1m1.519s
user 2m4.824s
sys 0m0.087s

Brief introduction of Pthread API

A Phtreads API is a standard (IEEE Posix 1.3c) application
program interface that could potentially be implemented on
many different systems. Pthreads is a standard multi way
multi-threaded support is offered.GNU/Linux implements the
Pthreads API by keeping all thread functions and data-types in
header file pthread. h. Pthread functions are not included in the
standard C library. Instead, they are in libpthread so we need
to compile and link out program as below:

Developing a Multi-Threaded application with the
Pthreads API

A multi-threaded application has multiple threads executing a
shared address space. A thread is a lightweight process that
executes within the same process. All the threads share the
code and the data segment, but each thread will have its own
program counter, machine registers and stack. The global and
static variables present in the process are common to threads.
Each thread will do a specific task assigned by the process.
Consider the Boss and worker model working in the figure for
a sample application to be written with the help of the Pthread
API.The idea of this application is to have a single boss thread
(main thread) that creates work and several worker threads that
process the work. Typically, the boss thread creates a number
of certain number of workers, distributes the work, and then
wait for the workers to complete the work. The worker threads
from the pool as shown in the Figure. This model works the
best when the work items/data are independent of each other
and we can schedule each worker thread on a separate core.

To create a thread we use the pthread_creation function
present in the API. We need to call it with four parameters,
which are listed below:

Parameter 1: It specifies the address of the variable where we

want to store the ID of the newly created thread
in the program for future reference.

Parameter 2: It specifies the thread attributes. NULL means
default attributes.

Parameter 3: It specifies the address of the function according
to which the newly created thread will perform
the task.

Parameter 4: It specifies the data which the newly created
thread gets from the caller.

Serial (sequential) application performance monitoring

We consider the application of two NxN matrices as the
benchmark application .Matrix multiplication can be done in
serial fashion as shown below:

We are executing the application on a system with Intel
CoreTM i5-3450 CPU @3.10GHz x 4, 4GB RAM running a
Linux OpenSUSE 42.1 Leap Version 64 bit operating system.
We can use the htop command and system monitor to
demonstrate the resource utilization of the application, as
shown in Figures 3 and 4. It is very clear that, of the 4 cores
available, the application is running on Core/CPU 1 is it is a
serial application with one thread of control. The other cores

3669 Asian Journal of Science and Technology Vol. 07, Issue, 10, pp.3668-3672, October, 2016

are underutilized because of this. With only 27.4 per cent of
CPU utilization, the application failed to take advantage of its
four cores, so the performance of the application is

Multi-threaded (parallel) application performance
monitoring

Matrix multiplication of two NxN matrices, can be done in
parallel, in many ways. We considered doing it in parallel, in
many ways. We considered doing it in parallel as shown in
Figure 2. If N is 4, then we can calculate two threads to
calculate the C matrix, where Thread 1 computes the elements
of the first two rows and thread 2 computes the elements of the
next two rows in parallel. If we create four threads, then each
thread computes elements of one row of C in parallel. The

Figure 3. Serial application performance monitoring with htop

Figure 4. Serial application performance monitoring system monitor

3670 Asian Journal of Science and Technology

are underutilized because of this. With only 27.4 per cent of
ake advantage of its

so the performance of the application is very poor.

threaded (parallel) application performance

Matrix multiplication of two NxN matrices, can be done in
parallel, in many ways. We considered doing it in parallel, in
many ways. We considered doing it in parallel as shown in

is 4, then we can calculate two threads to
calculate the C matrix, where Thread 1 computes the elements
of the first two rows and thread 2 computes the elements of the
next two rows in parallel. If we create four threads, then each

of one row of C in parallel. The

design idea is to distribute the work equally among the threads,
when N is an exact multiple of number of threads.

The execution is as follows

This will create a multi-threaded application with two worker
threads and one boss thread. The performance can be
monitored by htop as shown in Figure 5.
threads are running in parallel, simultaneously,
4, while the main thread (boss) is waiting as shown in Figure
5. The total CPU utilization is 55.4%.
performance is better than the serial performance. If you
replace the #define nthreads 2 in the above program with
#define nthreads 4 and recompile it,
threaded application with four worker threads and one boss

Figure 2. Matrix multiplication in parallel

Figure 3. Serial application performance monitoring with htop

Figure 4. Serial application performance monitoring system monitor

Asian Journal of Science and Technology Vol. 07, Issue, 10, pp.3668-3672, October,

design idea is to distribute the work equally among the threads,
when N is an exact multiple of number of threads.

threaded application with two worker
threads and one boss thread. The performance can be
monitored by htop as shown in Figure 5. The two worker
threads are running in parallel, simultaneously, on Cores 2 and

(boss) is waiting as shown in Figure
The total CPU utilization is 55.4%. The application

performance is better than the serial performance. If you
replace the #define nthreads 2 in the above program with
#define nthreads 4 and recompile it, then it generates a multi-
threaded application with four worker threads and one boss

Figure 4. Serial application performance monitoring system monitor

 2016

thread as shown in Figures 6 and 7.The four worker threads
are running simultaneously on Cores 1,2,3 and 4 respectively,
in parallel. It is very clear that CPU utilization
more than 99 per cent. So the application's performance is very
good.

Figure 5. Multi threaded application with one boss and two works threads

Figure 6. Multi thread application with one boss and 4 worker threads

Figure 7. Multi threaded application with one boss and 4 worker threads

3671 Asian Journal of Science and Technology

thread as shown in Figures 6 and 7.The four worker threads
are running simultaneously on Cores 1,2,3 and 4 respectively,
in parallel. It is very clear that CPU utilization has improved to
more than 99 per cent. So the application's performance is very

The total CPU utilization is 55.4%.The application
performance is better than the serial performance. If you
replace the #define nthreads 2 in the above program with
#define nthreads 4 and recompile it,
threaded application with four worker threads and one boss

Figure 5. Multi threaded application with one boss and two works threads

Multi thread application with one boss and 4 worker threads

Figure 7. Multi threaded application with one boss and 4 worker threads

Figure 8. performance comparison

Asian Journal of Science and Technology Vol. 07, Issue, 10, pp.3668-3672, October,

The total CPU utilization is 55.4%.The application
performance is better than the serial performance. If you
replace the #define nthreads 2 in the above program with
#define nthreads 4 and recompile it, then it generates a multi-

our worker threads and one boss

Figure 5. Multi threaded application with one boss and two works threads

Multi thread application with one boss and 4 worker threads

Figure 7. Multi threaded application with one boss and 4 worker threads

 2016

thread as shown in figures 6 and 7.The four worker threads are
running simultaneously on Cores 1,2,3 and 4 respectively, in
parallel. It is very clear that CPU utilization has improved to
more than 99 per cent. So the application's performance is very
good.

Conclusion

We have executed the serial application and multi-threaded
applications by taking n=80,160,320,640,1280,2560,5120 and
nthreads =2,4,8 in the case of multi-threaded applications. A
comparison of the results is shown in Figure 8.

In terms of execution time, the multithreaded application
clearly outperforms the serial applications performance. So,
with the Pthreads API we can develop parallel applications to
get a higher performance from the multi-core micropprocessor.

REFERENCES

http://www.geeksforgeeks.org/
Linux Man Page

3672 Asian Journal of Science and Technology Vol. 07, Issue, 10, pp.3668-3672, October, 2016

