ISSN: 0976-3376

RESEARCH ARTICLE

SPECIAL PAIRS OF PYTHAGOREAN TRIANGLES AND HARSHAD NUMBERS

Janaki, G. and *Radha, R.
Department of Mathematics, Cauvery College for Women, Annamalai Nagar, Trichy, India

ARTICLE INFO

Article History:

Received $14^{\text {th }}$ May, 2016
Received in revised form
$28^{\text {th }}$ June, 2016
Accepted $30^{\text {th }}$ July, 2016
Published online $30^{\text {th }}$ August, 2016

Key words:

Pairs of Pythagorean triangles, Harshad numbers,
Primitive and Non-Primitive Pythagorean triangles.

Mathematical classification:

11D09, 12D15

Abstract

We present pairs of Pythagorean triangles, such that in each pair, the difference between their perimeters is six times the Harshad number. Also we present the number of pairs of primitive and Nonprimitive Pythagorean triangles.

Copyright©2016, Janaki and Radha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The fascinating branch of mathematics is the theory of numbers where in Pythagorean triangles have been a matter of interest to various mathematicians and to the lovers of mathematics, because it is a treasure house in which the search for many hidden connection is a treasure hunt. For a rich variety of fascinating problems one may refer (Sierpinski, 2003; Gopalan and Janaki, 2008; Gopalan and Vijayashankar, 2010; Gopalan and Leelavathi, 2008 \& 2007; Gopalan and Gnanam, 2007; Gopalan and Devibala, 2006; Gopalan and Sivakami, 2013 \& 2012; Meena et al., 2014; Gopalan and Janaki, 2008; Gopalan and Sangeetha, 2010; Gopalan et al., 2010; Gopalan and V.Geetha, 2013). Apart from the other patterns we have some more fascinating patterns of numbers namely Jarasandha numbers, Nasty numbers and Dhurva numbers. These numbers have been presented in (Kapur, 1997; Bert Miller, 1980; Charles Bown, 1981; Sastry, 2001). In (Gopalan et al., 2013; Gopalan and Janaki, 2008; Gopalan and Janaki, 2008), special Pythagorean triangles connected with polygonal numbers and Nasty numbers are obtained. In (Mita Darbari, 2014), special Pythagorean triangles in connection with Hardy Ramanujan number 1729 are exhibited.

[^0]In (Janaki and Radha, 2016), special Pythagorean triangles connected with Harshad numbers. In (Janaki and Saranya, 2016), special pairs of Pythagorean triangles and Dhurva numbers are presented. Recently in, special pairs of Pythagorean triangles and Jarasandha numbers are presented. In this communication, we search for pairs of Pythagorean triangles, such that in each pair, the difference between their perimeters is six times the Harshad number.

Basic Definitions

Pythagorean Equation

The ternary quadratic Diophantine equation given by $x^{2}+y^{2}=z^{2}$ is known as Pythagorean equation where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are natural numbers. The above equations are also referred to as Pythagorean triangle and denote it by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})$. Also, in Pythagorean triangle $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z}): x^{2}+y^{2}=z^{2}, \mathrm{x}$ and y are called its legs and z its hypotenuse.

Primitive

Most cited solution of the Pythagorean equation is $x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}$ where $m>n>0$. This solution is called primitive, if m, n are of opposite parity and $\operatorname{gcd}(\mathrm{m}, \mathrm{n})$ $=1$.

Harshad Number: It is an integer that is divisible by the sum of its digits.

Method of Analysis

Let $\mathrm{PT}_{1}, \mathrm{PT}_{2}$ be two distinct Pythagorean triangles with generators $\mathrm{m}, \mathrm{q}(\mathrm{m}>\mathrm{q}>0)$, and $\mathrm{p}, \mathrm{q}(\mathrm{p}>\mathrm{q}>0)$ respectively, such that $\mathrm{m}+\mathrm{p}+\mathrm{q}=$ the three digit Harshad number 171. Let $\mathrm{P}_{1}, \mathrm{P}_{2}$ be the perimeters of $\mathrm{PT}_{1}, \mathrm{PT}_{2}$ such that $\mathrm{P}_{1}-\mathrm{P}_{2}=6$ times the 3-digit Harshad number 171.

The above relation leads to the equation
We have presented below in table 1 the values of m, p, q, P_{1} and P_{2}.

S.No.	m	q	p	P_{1}	P_{2}	$\frac{P_{1}-P_{2}}{6}$
1.	60	54	57	13680	12654	171
2.	61	52	58	13786	12760	171
3.	62	50	59	13888	12862	171
4.	63	48	60	13986	12960	171
5.	64	46	61	14080	13054	171
6.	65	44	62	14170	13144	171
7.	66	42	63	14256	13230	171
8.	67	40	64	14338	13312	171
9.	68	38	65	14416	13390	171
$1($	69	36	66	14490	13464	171
$1]$	70	34	67	14560	13534	171
12	71	32	68	14626	13600	171
$1:$	72	30	69	14688	13662	171
14	73	28	70	14746	13720	171
15	74	26	71	14800	13774	171
14	75	24	72	14850	13824	171
$1{ }^{\prime}$	76	22	73	14896	13870	171
18	77	20	74	14938	13912	171
15	78	18	75	14976	13950	171
21	79	16	76	15010	13984	171
21	80	14	77	15040	14014	171
$2{ }^{\prime}$	81	12	78	15066	14040	171
2:	82	10	79	15088	14062	171
2	83	8	80	15106	14080	171
$2!$	84	6	81	15120	14094	171
21	85	4	82	15130	14104	171
2	86	2	83	15136	14110	171

Thus, it is seen that there are 27 pairs of Pythagorean triangles such that for each pair the difference in the perimeters is six times the 3-digit Harshad number 171. Out of these 27 pairs of Pythagorean triangles 10-pairs are non-primitive and in each of the remaining 17 pairs, one of the triangle is primitive and the other is non-primitive triangle.

A similar observation, regarding 4-digit ,5-digit and 6-digit Harshad numbers are exhibited in the table 2 below:

Harshad Number	Pairs of Pythagorean triangles	Pairs of non-primitive Pythagorean triangles	Pairs of primitive and non-primitive Pythagorean triangles
3675	611	217	394
11025	1836	1163	673
155655	25940	10381	15559

Conclusion

One may search for the connections between the pairs of Pythagorean triangles and other Harshad numbers and other number patterns.

REFERENCES

Bert Miller, 1980. Nasty numbers, The mathematics teacher, No.9, Vol 73, 649.
Charles Bown, K. 1981. Nasties are primitives, The mathematics teacher, No.9, Vol 74, 502-504..
Gopalan M.A. and A. Gnanam, 2010. "Pythagorean triangles and polygonal numbers", International Journal of Mathematical Sciences, Vol 9, No. 1-2, 211-215.
Gopalan M.A. and G. Janaki, 2008. "Pythagorean triangle with area/perimeter as a special polygonal number", Bulletin of Pure and Applied Science, Vol.27E (No.2), 393-402.
Gopalan M.A. and S. Leelavathi, 2008 " Pythagorean triangle with area/perimeter as a square integer", International journal of Mathematics, Computer sciences and Information technology, Vol.1, No.2, 199-204.
Gopalan M.A. and V. Geetha, 2013. "Pythagorean triangle with area / perimeter as a Special polygonal number", IRJES, Vol. 2(7), 28-34.
Gopalan, A. and G. Janaki, 2008. "Pythagorean triangle with triangular number as a leg", Impact J.Sci.Tech., Vol 2(4), 195-199, 2008.
Gopalan, M.A. and A. Gnanam, 2007. "A special Pythagorean problem", Acta Ciencia Indica, Vol. XXXIII M, No 4, 1435-1439.
Gopalan, M.A. and A. Gnanam, 2007. "Pairs of Pythagorean triangles with equal perimeters", Impact J.Sci. Tech., Vol 1(2), 67-70.
Gopalan, M.A. and A. Vijayashankar, 2010. "Observations on a Pythagorean problem", Acta Ciencia Indica, Vol.XXXVI M, No 4,517-520.
Gopalan, M.A. and B. Sivakami, 2012. "Pythagorean triangle with hypotenuse minus 2 (area/perimeter) as a square integer", Archimedes J.Math., Vol 2(2), 153-166.
Gopalan, M.A. and B. Sivakami, 2013. "Special Pythagorean triangles generated through the integral solutions of the equation $y^{2}=\left(k^{2}+2 k\right) x^{2}+1$ ", Diophantus J.Math., Vol 2(1), 25-30.
Gopalan, M.A. and G. Janaki, 2008. "Pythagorean triangle with nasty number as a leg", Journal of applied Mathematical Analysis and Applications, Vol 4, No 1-2, 13-17, 2008.
Gopalan, M.A. and G. Janaki, 2008. "Pythagorean triangle with perimeter as pentagonal number", Antartica J.Math., Vol 5(2), 15-18,
Gopalan, M.A. and S. Devibala, 2006. "On a Pythagorean problem", Acta Ciencia Indica, Vol.XXXII M, No 4, 14511452.

Gopalan, M.A. and S. Leelavathi, 2007. "Pythagorean triangle with 2 area/perimeter as a cubic integer", Bulletin of Pure and Applied Science, Vol.26E (No.2), 197-200.
Gopalan, M.A., A. Gnanam and G. Janaki, 2007. "A Remarkable Pythagorean problem", Acta Ciencia Indica, Vol. XXXIII M, No 4, 1429-1434.
Gopalan, M.A., Manjusomanath and K. Geetha, 2013. "Pythagorean triangle with area / perimeter as a Special polygonal number", IOSR-JM, Vol. 7(3), 52-62.
Gopalan, M.A., V. Sangeetha and Manjusomanath, 2013. "Pythagorean trangle and Polygonal number", Cayley J.Math., Vol 2(2), 151-156.

Gopalanm M.A. and G. Sangeetha, 2010. "Pythagorean triangle with perimeter as triangular number", GJ-AMMS, Vol. 3, No 1-2,93-97.
Janaki, G. and C. Saranya, "Special Pairs of Pythagorean Triangles and Jarasandha Numbers", American International Journal of Research in Science, Technology, Engineering \& Mathematics, issue-13, 118-120, Dec 2015Feb 2016.
Janaki, G. and R. Radha, 2016. "Special Pythagorean triangles and 6-digit Harshad numbers", IJIRSET, vol. 5,Issue. 3, 3931-3933.
Kapur, J.N. 1997. Dhurva Numbers, Fascinating world of mathematics and mathematical sciences, Trust society, Vol 17.

Meena, K., S. Vidhyalakshmi, B. Geetha, A. Vijayashankar and M.A. Gopalan, 2014. "Relations between special polygonal numbers generated through the integral solutions of Pythagorean equation ", IJISM, Vol 2(2), 257-258.
Mita Darbari, 2014. "A connection between Hardy-Ramanujan number and special Pythagorean triangle", Bulletin of society for Mathematical services \& Standards, Vol 3, No.2, 71-73.
Sastry, P.S.N. 2001. Jarasandha numbers, The mathematics teacher, No.9, Vol 37, issues $3 \& 4$.
Sierpinski, W. 2003. Pythagorean triangles, Dover publications, INC, Newyork, 2003.

[^0]: *Corresponding autho: Radha, R.
 Department of Mathematics, Cauvery College for Women, Annamalai Nagar, Trichy, India.

