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 ARTICLE INFO    ABSTRACT 
 

A lot of interest has been recently expressed  through scientific literature, concerning the role of Na+, 
K+-ATPase (NKA)  especially in relation to  various diseases including autoimmune and 
neurodegenerative such as Alzheimer’s and Parkinson’s.  Moreover, a significant number of reports 
reveal involvement of NKA in cancer. This mini review focuses on the expression and function, of Na+, 
K+-ATPase but also gives an overview analysis of the recent findings on NKA vs cancer. 
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INTRODUCTION 
 

P-type ATPases 
 
P-type ATPases are biological pumps existing in all living 
systems and they have a number of conserved signature motifs 
associated with their catalytic mechanism (Sarah van Veen et 
al., 2014). The common region of all P-type ATPases is an 
acid-stable aspartyl phosphate intermediate firming the 
catalytic cycle (the reason of the name P-type). The 
phosphorylated Asp residue is located in a highly 
conserved DKTG sequence motif found in the cytoplasmic 
part of the proteins. The procedures of auto-phosphorylation 
and auto-dephosphorylation are strongly associated to 
substrate binding, transport and release (Sarah van Veen et al., 
2014). Based on phylogenetic analysis and sequence 
comparison, the P-type transport ATPase family can be 
categorized into five distinct subfamilies (P1–P5) (figure 1), 
which can be additionally divided into further subgroups (A, 
B, etc.) (Axelsen, 1998; Kuhlbrandt, 2004; Palmgren and 
Nissen, 2011). This phylogenetic division is further separated 
depending on variances in the preferred transport substrates. 
The P1-P3 ATPases are well studied ion pumps; specifically, 
P1A is a member of the K+ bacteria transport systems, P1B ion 
pump is a heavy metal transporter, P2A and P2B are  
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Ca2+ pumps, P2C Na+/K+- and H+/K+-pumps are found in 
animals, P2D are Na+ pumps found in fungi and mosses, P3A 
are plasma membrane H+ pumps present in fungi and plants, 
whilst the P3B are Mg2+ transporters  in a small group of 
bacterial (Sarah van Veen et al., 2014). Contrary to ion 
transports (P1-P3), P4 ATPases are involved in lipid flipping 
across membranes, generating membrane curving and baring 
or removing relevant signaling lipids. The substrate specificity 
of the P5 ATPase, the last subfamily, has yet to be fully 
characterized. 
  
Na+/K+-ATPase history  
 
The NKA was one of the first characterized membrane 
proteins (Glynn, 2002). Overton, around the nineteenth 
century suggested that Na+ and K+ exchange had to be taking 
place within the cells in order to explain the variations of 
Na+ concentration in nerves, leading to their excitability 
(Overton, 1902). In the 1950s, Hodgkin and Huxley (Hodgkin 
and Huxley, 1952) proposed the Na+ pump for the regeneration 
of dissipating gradients.  Later on, in 1957 the NKA as a 
functioning enzyme was demonstrated by Skou (Skou, 1957) 
to be a membrane-bound Na+ and K+-dependent ATPase. At 
the same time Post and Jolly (Post et al., 1957) presented that 
ATPase activity is responsible for the active transport of three 
Na+ and two K+ ions across the plasma membrane of 
erythrocytes (Glynn et al., 1956). 
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Na+/K+-ATPase role, function and composition  
 
The NKA, in the plasma membrane of eukaryotes, plays a 
major role in sodium transport and is therefore important for 
the cell’s homeostasis. The NKA transports three Na+ ions out 
of, and two K+ ions into, the cell for each ATP that is 
hydrolyzed (figure 2). The action of the pump, together with 
differential permeability through gated and ion-specific 
channels, leads to a resting membrane potential that is 
typically in the range of 30 mV to 70 mV (negative on the 
inside of the membrane) in most living mammalian cells 
(Rakowski et al., 1989; Robinson and Flashner, 1979; 
Geering, 1997; Pavlov and Sokolov, 2000). NKA reported 
above, belongs to P-type ATPase subclass and it is a 
transmembrane plasma protein consisting of two subunits, α 
and β units. The a subunit also known as catalytic subunit 
consists of 1000 amino acid residues that extents the plasma 
membrane 10 times, carries the binding sites for ATP and 
catalyzes the ion-dependent ATPase activity. In humans, four 
isoforms of the Na+, K+-ATPase α-subunit have been  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

identified: α1 is the predominant and ubiquitously expressed 
isoform; α2 is mainly expressed in skeletal, heart and smooth 
muscle, and in brain, lung and adipose tissue, α3 is primarily 
expressed by neurons and heart cells (Sweadner, 1989; Lingrel 
and Kuntzweiler, 1994; Kaplan, 2002) and isoform α4 is 
expressed only in testes (Shamraj and Lingrel, 1994) and has 
been linked to the mobility of spermatozoa (Woo et al., 2000).  
The β subunit consists of 300 residues with a single 
transmembrane spanning section (Jewell and Lingrel, 2000 
Malik et al., 1996). The b subunit regulates the conformational 
activity and stability of the α subunit (Blanco and Mercer, 
1998; Eakle et al., 1994). There are three isoforms of the β-
subunit; (Sweadner, 1989; Lingrel and Kuntzweiler, 1994; 
Kaplan, 2002) β1 is mostly found in tissues and is believed to 
form a regularly expressed α1β1 complex of the NKA, (Woo  et 
al., 2000; Shyjan et al., 1990) β2 is mainly expressed by 
neurons and in lower levels, by heart cells in rats (Chow and 
Forte, 1995); β3 is expressed in testes (Jewell et al., 1991) and 
has also been detected in neurons during early brain 
development in Xenopus laevi’s (Good et al., 1990).  

 
 

Figure 1. P-type transport ATPase family classification 
 

 
 

Figure 2. The NKA channel function. The channel scheme is adopted from PDB: 4XE5 
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To date, four genes (a1–a4) encoding the α subunit, three 
genes (b1–b3) encoding the β subunit, and one gene for the γ 
subunit have been identified in mammals (Malik et al., 1996).  
The nervous system contains all the isoforms but particularly 
the α1 is abundant in kidneys, α2 abundant in brain, skeletal 
muscle and heart and α3 mainly expressed in brain, but it is 
also present in heart (McGrail et al., 1991; Watts et al., 1991). 
A third small polypeptide the γ subunit, is associated with the 
αβ dimmer in a tissue-specific manner; this subunit does not 
seem to be required for functional Na, Na+, K+-ATPase and 
may play a regulatory role (Watts et al., 1991). Failure of the 
NKA, results in reduction of intracellular K+, increasing 
intracellular Na+, and therefore, leads to membrane 
depolarization and increases in intracellular free Ca2+ due to 
activation of voltage-gated Ca2+channels (Therien and 
Blostein, 2000; Archibald and White, 1974). 

 
NKA and diseases  
 
It has already been showed that deficiency of NKA may be a 
common pathogenesis of systemic lupus erythematosus, 
Alzheimer’s, Multiple Sclerosis, Parkinson’s disease, Down 
syndrome, as well as other autoimmune and neurodegenerative 
disorders (Xiao et al., 2002). More specific, the neurological 
disorders: alternating hemiplegia of childhood (AHC), familial 
hemiplegic migraine type2 (FHM2) and rapid-onset dystonia 
Parkinsonism (RDP) are autosomal dominant disorders caused 
by mutations of the NKA gene (Kumar and Kurup, 2002). For 
Example, red blood cell NKA is involved in intra and 
extracellular cation regulation (homeostasis). Dysfunctional 
NKA has also been reported as a complication of diabetes 
mellitus (Koc et al., 2003). Chronically demyelinated axons 
that lack NKA are unable to exchange axoplasmic Na+ for K+ 
and so unable to transmit the nerve impulse. Loss of axonal 
NKA is possible as a major contributor to nonstop 
neurological degeneration in chronic stages of MS.  
Quantitative magnetization transfer ratios and T1 contrast 
ratios may provide a non-invasive surrogate marker for 
monitoring this loss in MS patients (Young et al., 2008). 
 
NKA and cancer: Altered NKA activity in regulating 
carcinoma cell motility has been previously reported (Barwe et 
al., 2005).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cardiac glycoside inhibitor of the Na+/K+ ATPase pump 
displayed cytotoxic properties, triggered cell death, induced 
G2/M phase blockade in all the glioblastoma cell lines and 
impaired Glioblastoma (GBM) stem self-renewal capacity 
even at low concentrations. Heterotopic and orthotopic xeno-
transplantations were used to confirm in vivo anticancer effects 
of proscillaridin A, in both controls xenograft growth with 
improved mice survival. Altogether, these results suggested 
that proscillaridin A is a promising candidate against 
glioblastoma. Further reports showed cardiac glycosides to be 
associated with anticancer activity in other cancers (Emilie 
Denicolaï et al., 2014). NKA has also been reported as directly 
involved in the migration of cancer cells in general and of 
glioma cells in particular. The NKA α1 subunit is highly 
expressed in glioma cells versus normal brain tissue and has 
been proposed as a new and novel target for malignant glioma 
treatment (Lefranc and Kiss, 2008). Glioblastomas as tumors 
that over-express NKA α1 subunit are highly resistant to 
chemotherapy but they could benefit from a treatment using 
ligands with higher binding affinity for the enzyme α subunit 
(Lefranc and Kiss, 2008).  
 
Furthermore, NKA inhibitor demonstrates the induction of 
hybrid cell death in glioblastoma cells and enhanced cell death 
of a temozolomide (TMZ)-resistant cancer cell line. Based on 
its high expression level in TMZ-resistance cells, NKA may be 
a therapeutic target for the treatment of glioblastoma; 
sensitizing glioblastoma cells to conventional chemotherapy 
(Hideki Sakaia et al., 2004). In this study, instead of giving a 
detailed description of the structure and regulation of Na+, K+-
ATPase, the authors are focused on the most recent evidence 
indicating the unique role of Na+, K+-ATPase in cell death, 
including apoptosis and the newly recognized and defined 
‘‘hybrid death’’ of concurrent apoptosis and necrosis within 
the same cell population (Shan Ping Yu, 2003). Loss of 
epithelial structure, function and transformation of normal 
epithelial cells to malignant cells in the canine prostate NKA 
have also been reported. Specifically, the α2, α3 and γ subunits 
of NKA are not expressed in this tissue. Immunohistochemical 
and image analyses suggested that NKA expression is 
significantly reduced in canine PCa (Ali Mobasheri et al., 
2000). Other studies reported the association of NKA with 
apoptosis. Apoptosis or programed cell death is characterized 

Table 1. Scientific findings of previously published work on Na+, K+-ATPase and cancer 
 

Trial type Findings References 

In vitro Na+, K+-ATPase in regulating carcinoma cell 
motility 

Barwe SP1, Anilkumar G, Moon SY, Zheng Y, Whitelegge JP, Rajasekaran SA, 
Rajasekaran AK. (2005)  

In Vitro & 
In Vivo 

Cardiac glycoside inhibitor of the Na+/K+ ATPase 
pump promotes cell death 

Emilie Denicolaï, Nathalie Baeza Kallee, Aurélie Tchoghandjian, Manon Carré, Carole 
Colin, Carine Jiguet Jiglaire, Sandy Mercurio, Christophe Beclin, and Dominique 
Figarella-Branger. (2014)  

 
In vitro 

Na+, K+-ATPase α1 Subunit as a Potential Target 
to Combat Apoptosis Resistant Glioblastomas 

Lefranc F, Kiss R. (2008)  

In vitro Na, K-ATPase subunits expression is significantly 
reduced in canine PCa. 

Ali Mobasheri, Richard Fox, Iain Evans, Fay Cullingham, Pablo Martín 
Vasallo, and Christopher S Foster. (2003) 

 
 

In vitro 

K1-isoform expression and an increase in the K3-
isoform expression maybe associated with human 
colorectal cancer. 

Hideki Sakaia, Tomoyuki Suzukia, Mizuki Maedaa, Yuji Takahashia, Naoki 
Horikawab, Tetsuji Minamimurab, Kazuhiro Tsukadab, Noriaki Takeguchia. (2004) 

In vitro NKA inhibition promotes hybrid cell death Dongdong Chen, Mingke Song, Osama Mohamad and Shan Ping Yu. (2014), Shan 
Ping Yu (2003) 

 
In vivo 

Na+/K+ ATPase inhibition on distant tumor 
formation in mouse models 

Simpson CD, Mawji IA, Anyiwe K, Williams MA, Wang X, Venugopal 
AL, GrondaM, Hurren R, Cheng S, Serra S, Beheshti Zavareh R, Datti A, Wrana 
JL, Ezzat S, Schimmer AD (2009) 54 

In vitro Isoforms such as α1, α3, and β1 found that were 
highly expressed in metastases and tumor cells 

Marc Baker Bechmann1, Deborah Rotoli, Manuel Morales, María del Carmen Maeso, 
María del Pino García, Julio Ávila, Ali Mobasheri, and Pablo Martín-Vasallo. (2016) 
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by DNA fragmentation, nuclear condensation, chromatin 
margination, cell body shrinkage, and formation of apoptotic 
bodies (Raff et al., 1993; Thompson, 1995; Kerr et al., 1972; 
Majno, 1995). Apoptosis is also mediated by cascade 
activation, formation of the apoptosome, release of 
cytochrome c from mitochondria and activation of 
endonucleases (Mark et al., 1997; Bratton and Cohen, 2001; 
Chen and Wang, 2002; Hengartner et al., 2002; Li and Yuan, 
1999; Adams and Cory, 2002). Studies have demonstrated that 
α3-isoform protein increased in 13 of 17 carcinomas (76%) 
compared with the accompanying normal mucosae, with the 
α2- or α4-isoform remained to the same levels in colorectal 
carcinoma.  
 
In addition, a significant level of α3-isoform protein was 
consistently detected in human colonic adenocarcinoma cell 
lines such as KM12-L4, T-84 and HT-29. These results 
strongly suggested that decrease in the K1-isoform expression 
and an increase in the K3-isoform expression maybe 
associated with human colorectal cancer (Hideki Sakaia et al., 
2004). In Vivo studies have also demonstrated the effects of 
Na+/K+ ATPase inhibition on secondary tumor formation in 
mouse models. In these mouse models, quabain inhibited 
tumor metastases but did not alter the growth of subcutaneous 
tumors. After all, these results show a novel mechanism to 
sensitize resistant cells to anoikis (cells’ apoptotic response to 
the absence of cell–matrix interactions) and decrease tumor 
metastasis. Furthermore, they are suggesting a potential 
mechanism for the observed clinical reduction in metastasis 
and relapse in breast cancer patients who have undergone 
treatments with cardiac glycosides (Simpson et al., 2009). 
Finally, NKA α and β subunit isoforms expression was 
determined in colorectal cancer cells and liver metastasis 
(Simpson et al., 2009). In general, isoforms such as the α1, α3, 
and β1 found to be highly expressed in metastases and tumor 
cells. More specific, α1β1 and α3β1 isozymes found in 
cancerous cells resulted to be associated with highest and 
lowest Na+ affinity respectively and with the highest K+ 
affinity. These findings demonstrated that α3β1 isozyme could 
serve as a new experimental biomarker of colorectal metastatic 
cells in liver (Marc Baker Bechmann et al., 2016). 

 
Conclusion 
 
Overall, this review shows that further studies are necessary to 
determine the feature of the channel regulation in relation to 
cancer. NKA is not only a worth to study enzyme that has a 
number of functions and a manifold association but also could 
pave the way to prevent, treat and cure cancer. The regulation 
of the NKA channel could act as a cell death initiator. Several 
in vitro as well as in vivo tests have been performed with 
positive effects but further studies with properly designed 
protocol clinical trials need to be performed, for more 
conclusive results and/or any possible anticancer efficacy as a 
result of NKA channel up/down regulation.  
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