

RESEARCH ARTICLE

EFFICIENT AUTOMATIC TEST CASE GENERATION FOR DATA FLOW TESTING USING
NEIGHBORHOOD CROSSOVER METHOD IN GENETIC ALGORITHM

*Anushree and M. Mohan

Department of Computer Science and Engineering, SRM University, India

 ARTICLE INFO ABSTRACT

This paper presents the automatic test case generation for data flow testing. This paper applies Genetic
Algorithm using neighborhood crossover method which significantly increases the efficiency and
reduce the effort. For enhancing the efficiency in generating the test cases this approach includes a
mechanism for adapting the range of neighborhoods according to the evolutionary progress. There are
three types of neighborhood crossover: 4 neighbor crossover, 3 neighbor crossover and 2 neighbor
crossover.

Copyright © 2015 Anushree and M.Mohan.. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The development of software goes through various phases
such as planning, design, coding, testing, deployment and
maintenance. In these phases software testing is the most time
and effort consuming. Software is tested against the
requirements to make sure that the product is actually solving
the needs addressed and gathered during the requirements
phase. During this phase various types of testing are done.
Structural testing is in one of these testing. Data flow testing is
considered to be a form of structural testing. Data flow testing
is based on selecting paths through the program's control flow
in order to explore sequences of events related to the status of
data objects. Recently the main focus in testing is generating
the test cases automatically. Since manual testing can be
laborious and time consuming. In addition, a manual approach
might not always be effective in finding certain classes of
defects. This technique offers a possibility to perform testing
effectively and that can be run quickly and repeatedly. In case
of data flow testing, if done manually, testers may not be able
to find perfect test cases. The problem in data flow testing is
that the testers may have generated repeated test case or have
not covered all paths of the CFG (control flow graph) of the
program. This paper presents the approach to generate the test
cases automatically for data flow testing that uses a
neighborhood crossover in Genetic Algorithm.

*Corresponding author: Anushree,
Department of Computer Science and Engineering, SRM University,
India.

Genetic Algorithm includes the 3 operations: Selection,
Crossover and Mutation. This approach has used Data
dependence analysis which is used to guide the process of test
case generation. The approach followed by this paper merges
the Selection and Crossover operation by the application of
Neighborhood crossover. This approach conducts its search by
constructing new test cases from the previous effective test
cases. The neighborhood crossover takes the either initial
population or fittest population from the previous test data.
The neighborhood crossover can be applied on either 4 or 3 or
2 populations. In case if there are n (n>4) fittest test data it will
automatically consider 4 populations. This approach can be
effectively used for large programs as well as the programs
with or without loops and procedures.

Overall Block Diagram

ISSN: 0976-3376

Asian Journal of Science and Technology
Vol. 6, Issue 04, pp. 1354-1358, April, 2015

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF
SCIENCE AND TECHNOLOGY

Article History:

Received 13th January, 2015
Received in revised form
17th February, 2015
Accepted 02nd March, 2015
Published online 30th April, 2015

Key words:

Software Testing, Automatic Test Case
Generation, Data Flow Testing, Genetic
Algorithm, Neighborhood Crossover.

Proposed Methodology Description

Source Code

1 1 INTEGER X,Y,Z
2 1 READ(5,*)X,Y,Z
3 1 MID=Z
4 1 IF(Y.LT.Z)THEN
5 2 IF(X.LT.Y)THEN
6 3 MID=Y
7 4 ELSE
8 4 IF(X.LT.Z)THEN
9 5 MID=X
10 6 END IF
11 7 END IF
12 8 ELSE
13 8 IF(X.GE.Y)THEN

14 9 MID=Y
15 10 ELSE
16 10 IF(X.GT.Z)THEN
17 11 MID=X
18 12 END IF
19 13 END IF
20 14 END IF
21 14 PRINT*,'MIDDLE VALUE= ', MID
22 14 END

Source Code to be Tested

(1ST column represent the statement number and 2ND

column represent node number in its CFG)

Control Flow Graph of the Source Code

Control Flow Graph

The Control Flow Graph is referred as the graph or tree like
structure that states the flow of the inputs and output
throughout the source code. This can be defined by nodes and
edges and can be explained by the following definition

 Defs- defs states the definition of the input variables and
denoted by the nodes of the CFG.

 Uses- uses states the use of the input variable and
represented by the edges of the CFG.

 Reach(i)- It defines the set of all variable that reaches to
node i.

 Avail(i)- It is set of all the variables defs that are available
at node i.

 C-use(i)- It is the set of variables for which node i contains
a global c-use.

 P-use(i)- It is the set of variables for which edge(i,j)
contains a p-use.

 Dcu(i)- dcu(i) is obtained by

 Dcu(i)=reach(i) c-use(i)

 Dpu(I,j)- it is obtained by

 Dpu(i,j)=avail(i) p-use(i,j)

Initial Population

The proposed methodology is based upon the chromosomes.
Each chromosome is a test case which is represented by the
binary string. Initially there is take pop_size (no of
chromosomes) chromosomes. Each chromosome is a string of
length of m (bits). Further each chromosome is converted into
k decimal numbers where k is the number of inputs in the
given example program.

Neighborhood Crossover Method

Once the chromosomes are taken, it is needed to act upon
these chromosomes. Here the proposed methodology is going
to apply. Crossover is the operator applied in the Genetic
algorithm. Crossover is a process that exchanges the substring
of the two parent chromosomes at a random position pos . The
number pos is referred as the crossing point from where the
bits of the chromosomes will be swapped.

Suppose there are two parent chromosomes are
 110100110
 100110100
 And the position pos is 6 then the offspring will be
 110100100
 100110110

The proposed methodology of crossover is Neighborhood
Crossover. Neighborhood crossover is done by following three
types

 4 Neighbor crossover
 3 Neighbor crossover
 2 neighbor crossover

These crossovers are based upon the numbers of
chromosomes. Suppose there are n chromosomes and n>4
then by the fitness function it will select 4 fittest chromosomes
and will apply 4 Neighbor crossover. If there are 3 fittest
chromosomes, 3 Neighbor crossover will be applied otherwise
2 Neighbor crossover will be applied.

a. 4 Neighbor crossover
b.

If there are 4 chromosomes to be crossed over then this
method is applied. This method is applied in the following
way:

Suppose there are 4 chromosomes a, b, c and d and the
crossing point is pos the

1355 Asian Journal of Science and Technology Vol. 6, Issue 04, pp. 1354-1358, April, 2015

4 Neighbor crossovers

In the above mentioned method

ab1 and ab2 are offspring obtained from the crossover of a and

b at crossover position pos,
bc1 and bc2 are offspring obtained from the crossover of b and

c at crossover position pos,
ad1 and ad2 are offspring obtained from the crossover of a and

d at crossover position pos,
cd1 and cd2 are offspring obtained from the crossover of c and

d at crossover position pos.

3 Neighbor crossover

If there are three fittest chromosomes then this method can be
applied in the following way:

In the above mentioned method

ab1 and ab2 are offspring obtained from the crossover of a and
b at crossover position pos,
bc1 and bc2 are offspring obtained from the crossover of b and
c at crossover position pos,
ac1 and ac2 are offspring obtained from the crossover of a and
c at crossover position pos.

2 Neighbor crossover

If there are 2 fittest chromosomes then this method is applied.
According to this method if there two chromosomes a and b
they will be simply crossed over at position pos and the new
off springs will be ab1 and ab2.

Mutation

Mutation is another operator applied by the Genetic Algorithm
and always operated after the crossover operation. Mutation
operation just flips the bits of the given chromosome from 0 to
1 or vice versa. In any chromosome every bit has an equal
chance to undergo mutation.

Representation

The proposed method uses the m bit binary string which is
named as chromosome and act as a test case for the program.
To implement the test case we need to convert into the
decimal. Each chromosome is converted into k decimal
numbers where k is the number of the inputs in the program.
For each decimal number there is given the domain and
precision. Domain is represented by Di[ai,bi] and states the
length of decimal number as bi-ai . Precision is represented as
di.

Suppose a chromosome is divided into k substring where k is
the no of input variable and each substring has length mi

where i=1,2…….k

and (bi-ai)*10di ≤ 2mi-1

Then the each variable is converted into decimal form by the
following formula:

 xi=ai+xi’ .

Fitness Value

The whole genetic algorithm is based upon “survival of the
fittest”. It means that the fittest chromosome will be able to
proceed further. The fittest chromosome is obtained from its
fitness value. The fitness value of the chromosomes states if it
will survive anymore or not.

The fitness value is represented by eval(vi) for the
chromosome vi where i=1,2……pop_size. Its is calculated as

 No. of def-use paths covered by vi
 Eval(vi)= _______________________________
 Total no. of def-use path

Overall Algorithm

The proposed method is applied by the following algorithm

Input

Program P to be tested
List of def-use path to be covered
Crossover probability
Mutation probability
Max_gen
No. of input variables
Domain and precision of input variables
Population size pop_size

Output

Set of test cases
List of uncovered def-use path , if any

Process

Initial population
Def-use coverage vector=0
4 neighbor crossover
Mutation
Convert current chromosomes in decimal

1356 Asian Journal of Science and Technology Vol. 6, Issue 04, pp. 1354-1358, April, 2015

Execute program P with these test data
Evaluate these test data
If(some def-use path is covered)
Casen= Casen+1
Add this test case to the list of test cases
 Update def-use coverage vector
 Update def-use coverage percentage
End if
While(coverage percentage ≠ and no. of

generation ≤max_gen)
 Find X effective chromosome
 {
 If(X <4)
 Select 4 fittest chromosome
 Apply 4 neighbor crossover
 Else if(pop_size=3)
 Apply 3 neighbor crossover
 Else
 Apply 2 neighbor crossover
 }
 Mutation
 Convert current chromosomes in decimal
 Execute program P with these test data
 Evaluate these test data
 If(some def-use path is covered)
 Casen= Casen+1
 Add this test case to the list of test cases
 Update def-use coverage vector
 Update def-use coverage percentage
 End if
End while

Example

To illustrate the algorithm, here is given the solution that uses
the approached methodology. We have implemented the above
example with the approached methodology.

Pop_size : 4

Crossover probability: 0.8
Mutation probability: 0.15
No. of input variables: 3
Domain and precision of input variable: 1-20, 0; 1-20, 0; 1-
20, 0
Initially population

a. 000011100101110
b. 111111111010101
c. 110001110011110
d. 101101011010100

Mutation

Mutation point= 5

1. 000001111010101 1,19,14
2. 111101100101110 19,16,10
3. 111101110011110 19,18,19
4. 110011111010101 16,18,14
5. 000001100101110 1,14,13
6. 101111100101110 15,16,10
7. 101111110011110 15,18,19
8. 110011011010100 16,14,13

Case 1. 1,19,14
 Traversed path- 1,2,4,6,7,14
 Dpu path- 1,2,7,8,11,12
 Dcu path- 5
 Def-use coverage=24.13%
 Accumulated Def-use coverage=24.13%
Case 2. 19,16,10
 Traversed path- 1,2,3,7,14
 Dpu path- 5,6
 Dcu path- 6,1
 Def-use coverage= 13.79%
 Accumulated Def-use coverage= 37.92%
Case 3. 19,18,19
 Traversed path- 1,8,10,11,12,13,14
 Dpu path- 3,4,15,16,17,18
 Dcu path- 4,9
 Def-use coverage=27.58%
 Accumulated Def-use coverage= 65.5%
Case 4. 16,18,14
 Traversed path- 1,2,4,5,6,7,14
 Dpu path- 9,10
 Dcu path- 2,7
 Def-use coverage= 13.79%
 Accumulated Def-use coverage= 79.30%
Case 5. 1,14,13
 Traversed path- 1,8,10,12,13,14
 Dpu path- 19,20
 Dcu path- no path
 Def-use coverage= 6.90%
 Accumulated Def-use coverage= 86.20%
Case 6. Not selected
Case 7. 15,18,19
 Traversed path- 1,8,9,13,14
 Dpu path- 13,14,
 Dcu path- 8,3
 Def-use coverage= 13.80%
 Accumulated Def-use coverage= 100%
Generated test cases
 1,19,14
 19,16,10
 19,18,19
 16,18,14
 1,14,13
 15,18,19

Table. The def-use coverage vector of the source code

DCU path 1 2 3 4 5 6 7 8 9

Test Case 2 4 7 3 1 2 4 7 3
DPU path 1 2 3 4 5 6 7 8 9 10
Test case 1 1 3 3 2 2 1 1 4 4
DPU path 11 12 13 14 15 16 17 18 19 20
Test case 1 1 7 7 3 3 3 3 5 5

1357 Asian Journal of Science and Technology Vol. 6, Issue 04, pp. 1354-1358, April, 2015

RESULTS

The results shown here are given by comparing the simple
genetic Algorithm and the Genetic Algorithm with
Neighborhood Crossover.

Conclusion and Future Work

The result shows that the approached methodology is more
efficient as compare to simple Genetic Algorithm. It took less
number of path case generations for finding the test cases. This
can be more efficient if fuzzy logic is applied along with
Genetic Algorithm for test case generation for data flow
testing.

REFERENCE

Chayanika Sharma, Sangeeta sabharwal, and Ritu Sibbal,

2013. “A Survey On Software Testing Techniques using
Genetic Algorithm”, IJCSI International Journal of
Computer Science Issues, Vol 10, Issue 1, No 1, January.

D.J Berndt, A. Watkins, “High volume software testing using
genetic algorithms”, Proceedings of the 38th International
Conference on system sciences (9), IEEE, 2005, pp. 1- 9.

Girgis, “Automatic test generation for data flow testing using a
genetic algorithm”, Journal of computer science, 11 (6),
2005, pp. 898 – 915.

McMinn, “Search based software test generation: A survey”,
Software testing, Verification and reliability 14 (2), 2004,
pp. 105-156.

Mark Last et. al., “Effective black-box testing with genetic
algorithms”, Lecture notes in computer science, Springer,
2006, pp. 134 -148.

Maha alzabidi et. al., “Automatic software structural testing by

using evolutionary algorithms for test data generations”,
International Journal of Computer science and Network
Security 9 (4), 2009, pp. 390 – 395.

Naresh Chauhan, Software Testing: Principles and Practices,
Oxford University Press, 2010.

Sthamer “The Automatic Generation Of Software Test Data
Using Genetic Algorithms”. Phd thesis, university of
Glamorgan, Pontyprid, wales, Great Britain, 1996.

Stefan Wappler, Frank Lammermann, “Using Evolutionary
Algorithms For Unit Testing Of Object Oriented Software”
GECCO. ACM, 2005, pp.1925 - 1932.

 Sangeeta sabharwal et. al., “Prioritization Of Test Case
Scenarios Derived From Activity Diagram Using Genetic
Algorithm”. ICCCT . IEEE, 2010, 481- 485.

Sangeeta sabharwal et. al., “Applying Genetic Algorithm For
Prioritization Of Test Case Scenarios Derived From Uml
Diagrams” International journal of computer science
issues 8 (3), 2011, 433 - 444.

Timo Mantere, “Automatic software testing by Genetic
Algorithms” Phd thesis, University of Vaasa, Finland,
2003.

Velur Rajappa et. al., “Efficient Software Test Case
Generation Using Genetic Algorithm Based Graph
Theory” International Conference on emerging trends in
Engineering and Technology, IEEE, 2008, pp. 298 - 303.

Xuan Peng, Lu Lu, “A New Approach For Session - Based
Test Case Generation By Ga”. IEEE, 2011, pp. 91- 96.
IJCSI International Journal of Computer Science Issues,
Vol. 10, Issue 1, No 1, January 2013 ISSN (Print): 1694-
0784 | ISSN (Online): 1694-0814 www.IJCSI.org 393

Table: Comparison of results of the test case generation from Genetic algorithm and Genetic Algorithm with
Neighborhood Crossover for the above source code

Method
No. of path case

generated
No. of test case

generated
Mutation

probability Pm
Crossover

probability pc
Crossover
operation

Mutation
operation

D-U path
coverage

Genetic Algorithm

12

6

0.15

0.8

4 offspring

56 offspring

100%

Genetic Algorithm
with Neighborhood

Crossover

7

6

0.15

0.8

8 offspring

112 offspring

100%

1358 Asian Journal of Science and Technology Vol. 6, Issue 04, pp. 1354-1358, April, 2015

